(3.215.180.226) 您好!臺灣時間:2021/03/06 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李雅華
研究生(外文):Ya-Hua Lee
論文名稱:探討STMN3基因在人類膀胱尿路上皮癌細胞的角色及其機制
論文名稱(外文):Studies on the roles and mechanisms of the STMN3 gene in human bladder cancer-derived cell lines
指導教授:薛佑玲
指導教授(外文):Yow-Ling Shiue
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:致癌基因微管STMN3膀胱癌
外文關鍵詞:microtubulestathmin 3(STMN3)Bladder canceroncogene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們的研究探討了STMN3的功能和調節機制,STMN3是膀胱癌中的微管去穩定磷酸蛋白。我們的結果顯示穩定轉染pSTMN3-HaloTag在J82會上調STMN3 mRNA和STMN3蛋白質表現,而在BFTC905中使STMN3基因沉默會下調STMN3 mRNA和STMN3蛋白質表現。過度表達STMN3會誘導細胞增殖並改變細胞週期調節相關的蛋白質表現,而基因沉默則會抑制細胞增殖並改變細胞週期調節相關的蛋白質表現。STMN3蛋白上的絲氨酸50、65及73位置的突變會降低J82細胞中的細胞增殖和細胞非貼附性生長。在STMN3中加入LY294002 (PI3K抑制劑)和AZD6244 (MAP2K抑制劑)會穩定乙酰化微管蛋白的表現。對STMN3蛋白中幾種潛在的磷酸化位點的突變會略微降低J82細胞中的肌動蛋白聚合。我們得出結論,STMN3在膀胱癌中扮演致癌基因的角色,並且可能受PI3K與MEK/ERK訊息傳遞路徑所調控,也能干擾微管及肌動蛋白穩定性。
Our study explored the function and regulatory mechanisms of STMN3 which is the microtubule-destabilizing phosphoprotein in the bladder cancer. Our results showed that stable transfection of the pSTMN3-HaloTag plasmid upregulates while knockdown of the STMN3 gene suppresses STMN3 mRNA and STMN3 protein levels in J82 and BFTC905 cells, respectively. Exogenous STMN3 expression induces, while knockdown suppresses cell proliferation and alters the protein expression levels of several cell cycle regulators. Mutations on serine 50, 65 or 73 of the STMN3 protein decreases cell proliferation and colony formation/anchorage-independent cell growth in J82 cells. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MAP2K) stabilize acetylated-tubulin. Mutagenesis on several potential phosphorylated serines in the STMN3 protein slightly decrease actin polymerization in J82 cells. Taken together, our data indicated that STMN3 functions as an oncogene in bladder cancer, and regulated by PI3K and MEK/ERK signaling pathways, also interfered microtubule and actin polymerization stability.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
英文縮寫表 v
目錄 vi
圖次 ix
表次 x
壹、 緒論 (Introduction) 1
一、 膀胱癌 (Urinary bladder urothelial carcinoma, UBUC) 1
二、 微管 (Microtubule, MT) 3
三、 Stathmin 3 (STMN3) 4
貳、 實驗材料與方法 (Materials and methods) 6
一、 細胞培養 6
(一) 膀胱癌細胞株 (Cells and cell culture) 6
(二) 細胞解凍 (Thawing frozen cells) 6
(三) 繼代培養 (Subculture adherent cells) 7
(四) 細胞冷凍保存 (Freezing cells) 7
二、 質體製備 8
(一) 質體 (Plasmid) 8
(二) 瓊脂膠體電泳 (Agarose gel electrophoresis) 8
(三) 膠體DNA純化 (Gel extraction) 9
(四) 質體轉型 (Transformation) 9
(五) 質體純化 (Plasmids purification) 9
三、 基因轉染 11
(一) 瞬時轉染 (Transient transfection) 11
(二) 慢病毒感染 (Lentiviral infection) 11
四、 cDNA製備與Quantitative real-time (qPCR) 12
(一) Total RNA萃取 (Total RNA extraction) 12
(二) 反轉錄聚合酶連鎖反應 (Reverse transcription) 13
(三) 定量即時聚合酶鏈鎖反應 (Quantitative real-time; qRT-PCR) 13
五、 蛋白質電泳與西方墨點法 13
(一) 蛋白質純化 (Protein purification) 13
(二) 蛋白質定量 (Bradford protein assay) 14
(三) 蛋白質電泳 (SDS-PAGE) 14
(四) 西方墨點法 (Western Blot) 15
六、 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay 15
七、 5-bromo-2-deoxyuridine (BrdU) assay 16
八、 Cell proliferation (Fluorometric) 16
九、 細胞週期 (Cell cycle analysis) 17
十、 細胞遷移及侵犯試驗 (Transwell migration and invasion assay) 17
(一) 細胞遷移試驗 (Migration assay) 17
(二) 細胞侵犯試驗 (Invasion assay) 18
十一、 細胞轉型分析 (Soft agar assay) 18
十二、 定點突變 (Site-directed mutagenesis) 19
十三、 Actin Polymerization/Depolymerization (Fluorometric) 20
(一) Actin polymerization assay 20
(二) Actin depolymerization assay 21
十四、 實驗數據統計分析 21
參、 結果 (Results) 28
一、 分析人類膀胱癌細胞株之內生性STMN3的mRNA與蛋白質表現 28
二、 高度表現STMN3會促進膀胱癌細胞增生能力,抑制STMN3表現會抑制膀胱癌細胞增生能力 28
三、 高度表現STMN3會促進細胞週期進展,抑制STMN3表現會使細胞週期停滯在G2/M期 29
四、 高度表現STMN3會促進膀胱癌細胞非貼附性生長能力,抑制STMN3表現會抑制膀胱癌細胞非貼附性生長能力 30
五、 高度表現STMN3會促進膀胱癌細胞遷移及侵犯能力抑制STMN3的表現會抑制膀胱癌細胞遷移及侵犯能力 31
六、 STMN3磷酸化位點S50, S65, S73的突變會抑制膀胱癌細胞增生能力及細胞非貼附性生長能力 31
七、 STMN3會受到PI3K及MAPK路徑調控並穩定微管蛋白 (tubulin)的表現,且STMN3磷酸化位點S50, S65, S73的突變會影響微管蛋白的穩定 33
八、 STMN3磷酸化位點S50, S65, S73的突變會抑制膀胱癌細胞肌動蛋白 (actin)的聚合 34
肆、 討論 (Discussion) 50
伍、 參考文獻 (Reference) 52
陸、 Supplementary Data 56
Witjes, J. A., et al. (2014). "EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2013 Guidelines." European Urology 65(4): 778-792.

Knowles, M. A. and C. D. Hurst (2014). "Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity." Nature Reviews Cancer 15(1): 25-41.

Hoffman, A. M. and P. Cairns (2011). "The Epigenetics of Kidney Cancer and Bladder Cancer." Epigenomics 3(1): 19-34.

Murta-Nascimento, C., et al. (2007). "Epidemiology of urinary bladder cancer: from tumor development to patient’s death." World Journal of Urology 25(3): 285-295.

Volanis, D., et al. (2010). "Environmental factors and genetic susceptibility promote urinary bladder cancer." Toxicology Letters 193(2): 131-137.

Rouissi, K., et al. (2009). "Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population." Cancer Genetics and Cytogenetics 190(2): 101-107.

Kiriluk, K. J., et al. (2012). "Bladder cancer risk from occupational and environmental exposures." Urologic Oncology: Seminars and Original Investigations 30(2): 199-211.

Lamm, S. H., et al. (2013). "Bladder/lung cancer mortality in Blackfoot-disease (BFD)-endemic area villages with low (<150μg/L) well water arsenic levels – An exploration of the dose–response Poisson analysis." Regulatory Toxicology and Pharmacology 65(1): 147-156.

Wasco, M. J., et al. (2007). "Urothelial Carcinoma with Divergent Histologic Differentiation (Mixed Histologic Features) Predicts the Presence of Locally Advanced Bladder Cancer When Detected at Transurethral Resection." Urology 70(1): 69-74.

van den Bosch, S. and J. Alfred Witjes (2011). "Long-term Cancer-specific Survival in Patients with High-risk, Non–muscle-invasive Bladder Cancer and Tumour Progression: A Systematic Review." European Urology 60(3): 493-500.

Prout, G. R., et al. (1992). "Treated History of Noninvasive Grade 1 Transitional Cell Carcinoma." The Journal of Urology 148(5): 1413-1419.

Merseburger, A. S. and M. A. Kuczyk (2007). "The value of bladder-conserving strategies in muscle-invasive bladder carcinoma compared with radical surgery." Curr Opin Urol 17(5): 358-362.

Rödel, C., et al. (2006). "Trimodality Treatment and Selective Organ Preservation for Bladder Cancer." Journal of Clinical Oncology 24(35): 5536-5544.

Sanli, O., et al. (2017). "Bladder cancer." Nature Reviews Disease Primers 3: 17022.

Berdik, C. (2017). "Unlocking bladder cancer." Nature 551(7679): S34-s35.

Wang, S., et al. (2017). "Effect and mechanism of resveratrol on drug resistance in human bladder cancer cells." Mol Med Rep 15(3): 1179-1187.

Belmont, L. D. and T. J. Mitchison (1996). "Identification of a Protein That Interacts with Tubulin Dimers and Increases the Catastrophe Rate of Microtubules." Cell 84(4): 623-631.

Magiera, M. M. and C. Janke (2014). "Post-translational modifications of tubulin." Current Biology 24(9): R351-R354.

Mitchison, T. and M. Kirschner (1984). "Dynamic instability of microtubule growth." Nature 312: 237.

Gardner, M. K., et al. (2013). "Microtubule catastrophe and rescue." Current Opinion in Cell Biology 25(1): 14-22.

Kaverina, I. and A. Straube (2011). "Regulation of cell migration by dynamic microtubules." Seminars in Cell & Developmental Biology 22(9): 968-974.

Jordan, M. A. and L. Wilson (2004). "Microtubules as a target for anticancer drugs." Nature Reviews Cancer 4: 253.

Singh, P., et al. (2008). "Microtubule assembly dynamics: An attractive target for anticancer drugs." IUBMB Life 60(6): 368-375.

Galmarini, C. M., et al. (2003). "Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics." British Journal Of Cancer 88: 1793.

Ligon, L. A., et al. (2003). "The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization." Molecular biology of the cell 14(4): 1405-1417.

Biswas, S. and K. Kalil (2017). "The microtubule associated protein tau mediates the organization of microtubules and their dynamic exploration of actin-rich lamellipodia and filopodia of cortical growth cones." The Journal of Neuroscience.

Cassimeris, L. (2002). "The oncoprotein 18/stathmin family of microtubule destabilizers." Current Opinion in Cell Biology 14(1): 18-24.

Jourdain, L., et al. (1997). "Stathmin:  A Tubulin-Sequestering Protein Which Forms a Ternary T2S Complex with Two Tubulin Molecules." Biochemistry 36(36): 10817-10821.

A. Curmi, P., et al. (1999). "Stathmin and its Phosphoprotein Family: General Properties, Biochemical and Functional Interaction with Tubulin." Cell Structure and Function 24(5): 345-357.

Beretta, L., et al. (1993). "Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2." J Biol Chem 268(27): 20076-20084.

Leighton, I. A., et al. (1993). "The phosphorylation of stathmin by MAP kinase." Mol Cell Biochem 127-128: 151-156.

Belletti, B. and G. Baldassarre (2011). "Stathmin: a protein with many tasks. New biomarker and potential target in cancer." Expert Opinion on Therapeutic Targets 15(11): 1249-1266.

Ke, B., et al. (2013). "Overexpression of stathmin 1 is associated with poor prognosis of patients with gastric cancer." Tumor Biology 34(5): 3137-3145.

Yip, Y. Y., et al. (2014). "cAMP-dependent protein kinase and c-Jun N-terminal kinase mediate stathmin phosphorylation for the maintenance of interphase microtubules during osmotic stress." J Biol Chem 289(4): 2157-2169.

Charbaut, E., et al. (2001). "Stathmin family proteins display specific molecular and tubulin binding properties." J Biol Chem 276(19): 16146-16154.

Ozon, S., et al. (2002). "SCLIP: A Novel SCG10‐Like Protein of the Stathmin Family Expressed in the Nervous System." Journal of Neurochemistry 70(6): 2386-2396.

Ng, D. C., et al. (2009). "SCG10-like protein (SCLIP) is a STAT3-interacting protein involved in maintaining epithelial morphology in MCF-7 breast cancer cells." Biochem J 425(1): 95-105.

Greka, A., et al. (2003). "TRPC5 is a regulator of hippocampal neurite length and growth cone morphology." Nature Neuroscience 6: 837.

Poulain, F. E. and A. Sobel (2007). "The "SCG10-LIke Protein" SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10." Mol Cell Neurosci 34(2): 137-146.

Poulain, F. E., et al. (2008). "SCLIP Is Crucial for the Formation and Development of the Purkinje Cell Dendritic Arbor." The Journal of Neuroscience 28(29): 7387.

Xie, X., et al. (2013). "Bisphosphorylated PEA-15 Sensitizes Ovarian Cancer Cells to Paclitaxel by Impairing the Microtubule-Destabilizing Effect of SCLIP." Molecular Cancer Therapeutics 12(6): 1099.

Chauvin, S. and A. Sobel (2015). "Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration." Progress in Neurobiology 126: 1-18.

Gingrich, J. R. (2011). "Chemohyperthermia for bladder cancer—clinically effective?" Nature Reviews Urology 8: 414.

Kaufman, D. S., et al. (2009). "Bladder cancer." The Lancet 374(9685): 239-249.

Gavet, O., et al. (1998). "The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network." Journal of Cell Science 111(22): 3333.

Bhat, K. M. R. and V. Setaluri (2007). "Microtubule-Associated Proteins as Targets in Cancer Chemotherapy." Clinical Cancer Research 13(10): 2849.

Singer, S., et al. (2009). "Coordinated Expression of Stathmin Family Members by Far Upstream Sequence Element-Binding Protein-1 Increases Motility in Non–Small Cell Lung Cancer." Cancer Research 69(6): 2234.

Zhang, Y., et al. (2015). "Overexpression of SCLIP promotes growth and motility in glioblastoma cells." Cancer Biology & Therapy 16(1): 97-105.

Kuntziger, T., et al. (2001). "Differential effect of two stathmin/Op18 phosphorylation mutants on Xenopus embryo development." J Biol Chem 276(25): 22979-22984.

Hu, J.-Y., et al. (2010). "The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells." Cellular and Molecular Life Sciences 67(2): 321-333.

Wang, X., et al. (2010). "Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway." Cancer Biology & Therapy 10(6): 632-643.

Karst, A. M., et al. (2011). "Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas." Gynecologic Oncology 123(1): 5-12.

Rodriguez, O. C., et al. (2003). "Conserved microtubule–actin interactions in cell movement and morphogenesis." Nature Cell Biology 5: 599.

Giampietro, C., et al. (2005). "Stathmin Expression Modulates Migratory Properties of GN-11 Neurons in Vitro." Endocrinology 146(4): 1825-1834.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔