( 您好!臺灣時間:2021/02/26 04:41
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chi-Yuan Huang
論文名稱(外文):Inhibition of GDNF Signaling Reduces Tumorigenic Potential and Metastasis in Glioblastoma Multiforme
指導教授(外文):Kuang-Hung Cheng
外文關鍵詞:high recurrenceMalignant tumortransgenic miceGlioblastoma multiformeknockdown
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在腦部的神經膠質瘤中(Glioblastoma multiforme, GBM),多行性神經膠質母細胞瘤屬於最常見也是最致命且侵略的惡性腦腫瘤。相較於其他常見的癌症,最近幾十年在臨床上的試驗當中並無法有效的改善多行性神經膠質母細胞瘤生存率以及預後經常性復發情況。當病人被診斷出是罹患多行性神經膠質母細胞瘤時,通常壽命只剩下約2年的時間,即使手術切除腫瘤、放射和化學藥物治療同時複合治療,大多數仍舊因為極高復發率而死亡,因此找出原因和方法去應付多行性神經膠質母細胞瘤是目前非常重要的課題。我們實驗室已經建立的多行性膠質母細胞瘤轉基因小鼠模型 利用cDNA生物晶片技術我們發現,GDNF/RET信號路徑中下游的GFRA1和GFRA2都有大量表現在多行性神經膠質母細胞瘤的發展中。因此本篇的研究重點首先我們將GDNF/RET、GFRA1或GFRA2剃除時,是否可以有效抑制多行性神經膠質母細胞瘤的生長和移動。因此我們將多行性神經膠質母細胞瘤的細胞株做了GFRA1和GFRA2的基因敲落以降低基因的表現,並且做了一系列細胞功能性分析實驗,我們發現將GDNF/RET、GFRA1或GFRA2剃除時,可以有效抑制多行性神經膠質母細胞瘤的生長和移動。另外將我們的GBM小鼠投GDNF/RET抑制劑,我們證實GDNF/RET這條信號路徑如果被抑制之後,可以有效的降低多行性神經膠質母細胞瘤的生成。總結,我們的結果顯示GDNF / RET途徑可能是GBM治療的潛在治療靶點。
Glioblastoma multiforme (GBM) is the most common, deadly and aggressive brain tumor arising from glial cells. In contrast to other solid cancers, clinical trials in recent decades have not been effective to improve the survival rate and post-recurrence of GBM. When a patient is diagnosed with GBM. and went for resection of the tumor or combined chemotherapy, the prognosis of patients is still poor due to the relapse of the tumor. Indeed, the failed clinical trials with ineffective GBM treatment informed us that there is insufficient knowledge of the mechanisms underlying this lethal disease. To improve the outcomes for patients with GBM, our laboratory has established genetically modified mouse models of GBM. By using cDNA microarray analysis, we observed that GDNF/RET/GFRA1/GFRA2 signaling pathway was upregulated during GBM development. Therefore, this study aims to investigate the functional roles of GDNF/RET pathway in GBM progression, and test whether the inhibition of GDNF/GFRA pathway can block GBM development. Here we first knockdown of GFRA1 and GFRA2 in GBM cells to observe the decreased cell growth and migration in vitro. Lastly, we treated GBM mice with GDNF/RET inhibitors to show the significantly reduction of GBM formation in vivo. In summary. Our results suggest that the GDNF/RET pathway might be a potential therapeutic target for GBM treatment.
1.Van Meir, E.G., et al., Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 2010. 60(3): p. 166-93.
2.Krex, D., et al., Long-term survival with glioblastoma multiforme. Brain, 2007. 130(Pt 10): p. 2596-606.
3.Jones, T.S. and E.C. Holland, Molecular pathogenesis of malignant glial tumors. Toxicol Pathol, 2011. 39(1): p. 158-66.
4.Ohgaki, H. and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol, 2005. 64(6): p. 479-89.
5.Smoll, N.R., K. Schaller, and O.P. Gautschi, Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci, 2013. 20(5): p. 670-5.
6.Chow, L.M. and S.J. Baker, Capturing the molecular and biological diversity of high-grade astrocytoma in genetically engineered mouse models. Oncotarget, 2012. 3(1): p. 67-77.
7.Walker, C., et al., Biology, genetics and imaging of glial cell tumours. Br J Radiol, 2011. 84 Spec No 2: p. S90-106.
8.Vigneswaran, K., S. Neill, and C.G. Hadjipanayis, Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med, 2015. 3(7): p. 95.
9.Grier, J.T. and T. Batchelor, Low-grade gliomas in adults. Oncologist, 2006. 11(6): p. 681-93.
10.Gupta, M., A. Djalilvand, and D.J. Brat, Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol, 2005. 124(5): p. 755-68.
11.Miller, C.R., et al., Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol, 2006. 24(34): p. 5419-26.
12.Reilly, K.M., et al., Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet, 2000. 26(1): p. 109-13.
13.Biernat, W., 2000 World Health Organization classification of tumors of the nervous system. Pol J Pathol, 2000. 51(3): p. 107-14.
14.Brat, D.J. and E.G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest, 2004. 84(4): p. 397-405.
15.Ohgaki, H. and P. Kleihues, Genetic pathways to primary and secondary glioblastoma. Am J Pathol, 2007. 170(5): p. 1445-53.
16.Chen, L., et al., Vertebrate animal models of glioma: understanding the
mechanisms and developing new therapies. Biochim Biophys Acta, 2013. 1836(1): p. 158-65.
17.Ohgaki, H. and P. Kleihues, The definition of primary and secondary glioblastoma. Clin Cancer Res, 2013. 19(4): p. 764-72.
18.Nelson, W.J. and R. Nusse, Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004. 303(5663): p. 1483-7.
19.Agnihotri, S., et al., Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz), 2013. 61(1): p. 25-41.
20.Kleihues, P. and H. Ohgaki, Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol, 1999. 1(1): p. 44-51.
21.Hatanpaa, K.J., et al., Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia, 2010. 12(9): p. 675-84.
22.Westhoff, M.A., et al., A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. Mol Cell Ther, 2014. 2: p. 32.
23.Walrath, J.C., et al., Genetically engineered mouse models in cancer research. Adv Cancer Res, 2010. 106: p. 113-64.
24.Politi, K. and W. Pao, How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol, 2011. 29(16): p. 2273-81.
25.Heyer, J., et al., Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer, 2010. 10(7): p. 470-80.
26.Guerra, C. and M. Barbacid, Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol, 2013. 7(2): p. 232-47.
27.Singh, M. and L. Johnson, Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res, 2006. 12(18): p. 5312-28.
28.Parisotto, M. and D. Metzger, Genetically engineered mouse models of prostate cancer. Mol Oncol, 2013. 7(2): p. 190-205.
29.Hoess, R.H., M. Ziese, and N. Sternberg, P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A, 1982. 79(11): p. 3398-402.
30.Lobocka, M.B., et al., Genome of bacteriophage P1. J Bacteriol, 2004. 186(21): p. 7032-68.
31.Ghosh, K. and G.D. Van Duyne, Cre-loxP biochemistry. Methods, 2002. 28(3): p. 374-83.
32.Hoess, R.H., A. Wierzbicki, and K. Abremski, The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res, 1986. 14(5): p. 2287-300.
33.Shaikh, A.C. and P.D. Sadowski, The Cre recombinase cleaves the lox site in trans. J Biol Chem, 1997. 272(9): p. 5695-702.
34.Castellano, E. and J. Downward, RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer, 2011. 2(3): p. 261-74.
35.Nagy, A., Cre recombinase: the universal reagent for genome tailoring. Genesis, 2000. 26(2): p. 99-109.
36.Sauer, B., Inducible gene targeting in mice using the Cre/lox system. Methods, 1998. 14(4): p. 381-92.
37.de Vries, N.A., et al., Rapid and robust transgenic high-grade glioma mouse models for therapy intervention studies. Clin Cancer Res, 2010. 16(13): p. 3431-41.
38.Huse, J.T. and E.C. Holland, Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol, 2009. 19(1): p. 132-43
39.Simeonova, I. and E. Huillard, In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell Mol Life Sci, 2014. 71(20): p. 4007-26.
40.Uhrbom, L., et al., Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res, 2002. 62(19): p. 5551-8.
41.Holland, E.C., et al., Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet, 2000. 25(1): p. 55-7.
42.Knobbe, C.B., J. Reifenberger, and G. Reifenberger, Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol, 2004. 108(6): p. 467-70.
43.Chang, F., et al., Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003. 17(7): p. 1263-93.
44.Chappell, W.H., et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011. 2(3): p. 135-64.
45.Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501.
46.Klarenbeek, S., M.H. van Miltenburg, and J. Jonkers, Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol, 2013. 7(2): p. 146-64.
47.Gont, A., et al., PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget, 2013. 4(8): p. 1266-79.
48.Zheng, H., et al., p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 2008. 455(7216): p. 1129-33.
49.Kim, H.S., et al., Gliomagenesis arising from Pten- and Ink4a/Arf-deficient neural progenitor cells is mediated by the p53-Fbxw7/Cdc4 pathway, which controls c-Myc. Cancer Res, 2012. 72(22): p. 6065-75.
50.Nagpal, J., et al., Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res, 2006. 26(6C): p. 4633-9.
51.Sun, W. and J. Yang, Functional mechanisms for human tumor suppressors. J Cancer, 2010. 1: p. 136-40.
52.Cheng, Y., et al., Molecular analysis of microdissected de novo glioblastomas and paired astrocytic tumors. J Neuropathol Exp Neurol, 1999. 58(2): p. 120-8.
53.Shiraishi, S., et al., Influence of p53 mutations on prognosis of patients with glioblastoma. Cancer, 2002. 95(2): p. 249-57.
54.Lin, L.F., et al., GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 1993. 260(5111): p. 1130-1132.
55.Kotzbauer, P.T., et al., Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature, 1996. 384(6608): p. 467-70.
56.Milbrandt, J., et al., Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron, 1998. 20(2): p. 245-53.
57.Baloh, R.H., et al., Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3–RET receptor complex. Neuron, 1998. 21(6): p. 1291-302.
58.Trupp, M., et al., Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996. 381(6585): p. 785-9.
59.Durbec, P., et al., GDNF signalling through the Ret receptor tyrosine kinase. Nature, 1996. 381(6585): p. 789-93.
60.Jing, S., et al., GDNF–induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell, 1996. 85(7): p. 1113-124.
61.Sanicola, M., et al., Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. P Natl A Sci, 1997. 94(12): p. 6238-243.
62.Jing, S., et al., GFRα-2 and GFRα-3 are two new receptors for ligands of the GDNF family. J Biol Chem, 1997. 272(52): p. 33111-17.
63.Suvanto, P., et al., Cloning, mRNA distribution and chromosomal localisation of the gene for glial cell line-derived neurotrophic factor receptor β, a homologue to GDNFR-α.Mol Genet, 1997. 6(8): p. 1267-73.
64.Cornejo, M., et al., Effect of NRG1, GDNF, EGF and NGF in the migration of a Schwann cell precursor line. Neurochemical Res, 2010. 35(10): p. 1643-51.
65.Dudanova, I., G. Gatto, and R. Klein, GDNF acts as a chemoattractant to support ephrinA-induced repulsion of limb motor axons. Current Biology, 2010. 20(23): p. 2150-56.
66.Koelsch, A., et al., Transgene‐mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. Journal of neurochemistry, 2010. 113(1): p. 143-52.
67.Wiesenhofer, B., et al., Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-α1) are strongly expressed in human gliomas. Acta neuropathologica, 2000. 99(2): p. 131-37.
68.Pachnis, V., B. Mankoo, and F. Costantini, Expression of the c-ret proto-oncogene during mouse embryogenesis. Development, 1993. 119(4): p. 1005-17.
69.Pierotti, M.A., et al., Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Gene Chromosome Canc, 1996. 16(1): p. 1-14.
70.Tsuzuki, T., et al., Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene, 1995. 10(1): p. 191-8.
71.Trupp, M., et al., Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. Journal of Neuroscience, 1997. 17(10): p. 3554-67.
72.Bennett, D.L., et al., A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosi, 1998. 18(8): p. 3059-72.
73.Takahashi, M., J. Ritz, and G.M. Cooper, Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 1985. 42(2): p. 581-8.
74.Takahashi, M. and G.M. Cooper, ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Method MolCell Biol, 1987. 7(4): p. 1378-85.
75.Takahashi, M., et al., Developmentally regulated expression of a human" finger"-containing gene encoded by the 5''half of the ret transforming gene. Method MolCell Biol, 1988. 8(4): p. 1853-56.
76.Takahashi, M., The GDNF/RET signaling pathway and human diseases. Cytokine Growth F R, 2001. 12(4): p. 361-73.
77.Allen, B.K., et al., Epigenetic pathways and glioblastoma treatment: insights from signaling cascades. J Cell Biochem, 2015. 116(3): p. 351-63.
78.Fischer, I., et al., Angiogenesis in gliomas: biology and molecular pathophysiology. Brain pathology, 2005. 15(4): p. 297-310.
79.Louis, D.N., E.C. Holland, and J.G. Cairncross, Glioma classification: a molecular reappraisal. Am J Pathol, 2001. 159(3): p. 779-86.
80.Tufro, A., et al., Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochemical and biophysical research communications, 2007. 358(2): p. 410-16.
81.Holmes, K., et al., Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling, 2007. 19(10): p. 2003-12.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔