|
1.Van Meir, E.G., et al., Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 2010. 60(3): p. 166-93. 2.Krex, D., et al., Long-term survival with glioblastoma multiforme. Brain, 2007. 130(Pt 10): p. 2596-606. 3.Jones, T.S. and E.C. Holland, Molecular pathogenesis of malignant glial tumors. Toxicol Pathol, 2011. 39(1): p. 158-66. 4.Ohgaki, H. and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol, 2005. 64(6): p. 479-89. 5.Smoll, N.R., K. Schaller, and O.P. Gautschi, Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci, 2013. 20(5): p. 670-5. 6.Chow, L.M. and S.J. Baker, Capturing the molecular and biological diversity of high-grade astrocytoma in genetically engineered mouse models. Oncotarget, 2012. 3(1): p. 67-77. 7.Walker, C., et al., Biology, genetics and imaging of glial cell tumours. Br J Radiol, 2011. 84 Spec No 2: p. S90-106. 8.Vigneswaran, K., S. Neill, and C.G. Hadjipanayis, Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med, 2015. 3(7): p. 95. 9.Grier, J.T. and T. Batchelor, Low-grade gliomas in adults. Oncologist, 2006. 11(6): p. 681-93. 10.Gupta, M., A. Djalilvand, and D.J. Brat, Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol, 2005. 124(5): p. 755-68. 11.Miller, C.R., et al., Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol, 2006. 24(34): p. 5419-26. 12.Reilly, K.M., et al., Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet, 2000. 26(1): p. 109-13. 13.Biernat, W., 2000 World Health Organization classification of tumors of the nervous system. Pol J Pathol, 2000. 51(3): p. 107-14. 14.Brat, D.J. and E.G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest, 2004. 84(4): p. 397-405. 15.Ohgaki, H. and P. Kleihues, Genetic pathways to primary and secondary glioblastoma. Am J Pathol, 2007. 170(5): p. 1445-53. 16.Chen, L., et al., Vertebrate animal models of glioma: understanding the mechanisms and developing new therapies. Biochim Biophys Acta, 2013. 1836(1): p. 158-65. 17.Ohgaki, H. and P. Kleihues, The definition of primary and secondary glioblastoma. Clin Cancer Res, 2013. 19(4): p. 764-72. 18.Nelson, W.J. and R. Nusse, Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004. 303(5663): p. 1483-7. 19.Agnihotri, S., et al., Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz), 2013. 61(1): p. 25-41. 20.Kleihues, P. and H. Ohgaki, Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol, 1999. 1(1): p. 44-51. 21.Hatanpaa, K.J., et al., Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia, 2010. 12(9): p. 675-84. 22.Westhoff, M.A., et al., A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. Mol Cell Ther, 2014. 2: p. 32. 23.Walrath, J.C., et al., Genetically engineered mouse models in cancer research. Adv Cancer Res, 2010. 106: p. 113-64. 24.Politi, K. and W. Pao, How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol, 2011. 29(16): p. 2273-81. 25.Heyer, J., et al., Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer, 2010. 10(7): p. 470-80. 26.Guerra, C. and M. Barbacid, Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol, 2013. 7(2): p. 232-47. 27.Singh, M. and L. Johnson, Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res, 2006. 12(18): p. 5312-28. 28.Parisotto, M. and D. Metzger, Genetically engineered mouse models of prostate cancer. Mol Oncol, 2013. 7(2): p. 190-205. 29.Hoess, R.H., M. Ziese, and N. Sternberg, P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A, 1982. 79(11): p. 3398-402. 30.Lobocka, M.B., et al., Genome of bacteriophage P1. J Bacteriol, 2004. 186(21): p. 7032-68. 31.Ghosh, K. and G.D. Van Duyne, Cre-loxP biochemistry. Methods, 2002. 28(3): p. 374-83. 32.Hoess, R.H., A. Wierzbicki, and K. Abremski, The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res, 1986. 14(5): p. 2287-300. 33.Shaikh, A.C. and P.D. Sadowski, The Cre recombinase cleaves the lox site in trans. J Biol Chem, 1997. 272(9): p. 5695-702. 34.Castellano, E. and J. Downward, RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer, 2011. 2(3): p. 261-74. 35.Nagy, A., Cre recombinase: the universal reagent for genome tailoring. Genesis, 2000. 26(2): p. 99-109. 36.Sauer, B., Inducible gene targeting in mice using the Cre/lox system. Methods, 1998. 14(4): p. 381-92. 37.de Vries, N.A., et al., Rapid and robust transgenic high-grade glioma mouse models for therapy intervention studies. Clin Cancer Res, 2010. 16(13): p. 3431-41. 38.Huse, J.T. and E.C. Holland, Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol, 2009. 19(1): p. 132-43 39.Simeonova, I. and E. Huillard, In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell Mol Life Sci, 2014. 71(20): p. 4007-26. 40.Uhrbom, L., et al., Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res, 2002. 62(19): p. 5551-8. 41.Holland, E.C., et al., Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet, 2000. 25(1): p. 55-7. 42.Knobbe, C.B., J. Reifenberger, and G. Reifenberger, Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol, 2004. 108(6): p. 467-70. 43.Chang, F., et al., Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003. 17(7): p. 1263-93. 44.Chappell, W.H., et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011. 2(3): p. 135-64. 45.Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501. 46.Klarenbeek, S., M.H. van Miltenburg, and J. Jonkers, Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol, 2013. 7(2): p. 146-64. 47.Gont, A., et al., PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget, 2013. 4(8): p. 1266-79. 48.Zheng, H., et al., p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 2008. 455(7216): p. 1129-33. 49.Kim, H.S., et al., Gliomagenesis arising from Pten- and Ink4a/Arf-deficient neural progenitor cells is mediated by the p53-Fbxw7/Cdc4 pathway, which controls c-Myc. Cancer Res, 2012. 72(22): p. 6065-75. 50.Nagpal, J., et al., Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res, 2006. 26(6C): p. 4633-9. 51.Sun, W. and J. Yang, Functional mechanisms for human tumor suppressors. J Cancer, 2010. 1: p. 136-40. 52.Cheng, Y., et al., Molecular analysis of microdissected de novo glioblastomas and paired astrocytic tumors. J Neuropathol Exp Neurol, 1999. 58(2): p. 120-8. 53.Shiraishi, S., et al., Influence of p53 mutations on prognosis of patients with glioblastoma. Cancer, 2002. 95(2): p. 249-57. 54.Lin, L.F., et al., GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 1993. 260(5111): p. 1130-1132. 55.Kotzbauer, P.T., et al., Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature, 1996. 384(6608): p. 467-70. 56.Milbrandt, J., et al., Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron, 1998. 20(2): p. 245-53. 57.Baloh, R.H., et al., Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3–RET receptor complex. Neuron, 1998. 21(6): p. 1291-302. 58.Trupp, M., et al., Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996. 381(6585): p. 785-9. 59.Durbec, P., et al., GDNF signalling through the Ret receptor tyrosine kinase. Nature, 1996. 381(6585): p. 789-93. 60.Jing, S., et al., GDNF–induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell, 1996. 85(7): p. 1113-124. 61.Sanicola, M., et al., Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. P Natl A Sci, 1997. 94(12): p. 6238-243. 62.Jing, S., et al., GFRα-2 and GFRα-3 are two new receptors for ligands of the GDNF family. J Biol Chem, 1997. 272(52): p. 33111-17. 63.Suvanto, P., et al., Cloning, mRNA distribution and chromosomal localisation of the gene for glial cell line-derived neurotrophic factor receptor β, a homologue to GDNFR-α.Mol Genet, 1997. 6(8): p. 1267-73. 64.Cornejo, M., et al., Effect of NRG1, GDNF, EGF and NGF in the migration of a Schwann cell precursor line. Neurochemical Res, 2010. 35(10): p. 1643-51. 65.Dudanova, I., G. Gatto, and R. Klein, GDNF acts as a chemoattractant to support ephrinA-induced repulsion of limb motor axons. Current Biology, 2010. 20(23): p. 2150-56. 66.Koelsch, A., et al., Transgene‐mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. Journal of neurochemistry, 2010. 113(1): p. 143-52. 67.Wiesenhofer, B., et al., Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-α1) are strongly expressed in human gliomas. Acta neuropathologica, 2000. 99(2): p. 131-37. 68.Pachnis, V., B. Mankoo, and F. Costantini, Expression of the c-ret proto-oncogene during mouse embryogenesis. Development, 1993. 119(4): p. 1005-17. 69.Pierotti, M.A., et al., Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Gene Chromosome Canc, 1996. 16(1): p. 1-14. 70.Tsuzuki, T., et al., Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene, 1995. 10(1): p. 191-8. 71.Trupp, M., et al., Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. Journal of Neuroscience, 1997. 17(10): p. 3554-67. 72.Bennett, D.L., et al., A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosi, 1998. 18(8): p. 3059-72. 73.Takahashi, M., J. Ritz, and G.M. Cooper, Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 1985. 42(2): p. 581-8. 74.Takahashi, M. and G.M. Cooper, ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Method MolCell Biol, 1987. 7(4): p. 1378-85. 75.Takahashi, M., et al., Developmentally regulated expression of a human" finger"-containing gene encoded by the 5''half of the ret transforming gene. Method MolCell Biol, 1988. 8(4): p. 1853-56. 76.Takahashi, M., The GDNF/RET signaling pathway and human diseases. Cytokine Growth F R, 2001. 12(4): p. 361-73. 77.Allen, B.K., et al., Epigenetic pathways and glioblastoma treatment: insights from signaling cascades. J Cell Biochem, 2015. 116(3): p. 351-63. 78.Fischer, I., et al., Angiogenesis in gliomas: biology and molecular pathophysiology. Brain pathology, 2005. 15(4): p. 297-310. 79.Louis, D.N., E.C. Holland, and J.G. Cairncross, Glioma classification: a molecular reappraisal. Am J Pathol, 2001. 159(3): p. 779-86. 80.Tufro, A., et al., Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochemical and biophysical research communications, 2007. 358(2): p. 410-16. 81.Holmes, K., et al., Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling, 2007. 19(10): p. 2003-12.
|