(3.238.249.17) 您好!臺灣時間:2021/04/13 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳瑋鴻
研究生(外文):Wei-Hung Chen
論文名稱:以蜘蛛絲薄膜作為中介層利用布拉赫波增強之光柵感測器
論文名稱(外文):Spider silk film as a linkage layer in Bloch surface wave-enhanced grating sensor
指導教授:洪玉珠洪玉珠引用關係
指導教授(外文):Yu-Ju Hung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:生物感測器蜘蛛絲螢光光子晶體布拉赫表面波
外文關鍵詞:Biological fluorescenceSpider silkBloch surface waveBiosensorPhotonic crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在利用布拉赫表面波的特性以及蜘蛛絲的生物相容性,製作出生物感測器,此感測器在光柵的動量補償下耦合到布拉赫表面波而能大幅增強螢光的發光效率,且能將待檢抗原連結至元件上並且以螢光標記,期許以後能藉由測量放光強度,而得知待測物的含量與濃度。
生物螢光的發光強度非常微弱,因此需要光學架構的幫助,光學架構為光子晶體及光柵和一層蜘蛛絲薄膜的結合。利用光子晶體擁有禁帶的特性,光無法在禁帶中傳播,以及在光柵的耦合下可以形成存在於光子晶體與均勻介質層間的表面波,表面波會隨著離開介質表面而呈指數衰減,因此能量都被侷限於介面上,使得介面近場電磁場強度增強而導致螢光更亮。蜘蛛絲薄膜作為生物螢光以及光子晶體間的中介層,因為蜘蛛絲為蛋白質材料具有良好的生物相容性,能將酶、酵素、螢光抗體等利用生物工程技術連結到絲上。
In the experiment, we observed that the spider silk as a biological film. It can be manipulated with ease into a variety of configurations. We have succeeded in making biological materials combined with nano-optical components for biosensors by spider silk. This biosensors is fabricated by using the characteristics of the Bloch surface wave and the biocompatibility of the spider silk. The sensitivity, and the fluorescence luminous efficiency has greatly been enhanced in the optical design, as well as for a broad bandwidth. The combination between the fluorescent antibody and antigen could be effectively identified due to the optical enhancement. In the future, it is possible to characterize the concentration of the tested object by measuring the intensity of light emission.
中文審定書 i
致謝 ii
摘要 iii
Abstract iv
圖次 vii
表次 x
第一章 序論1
1.1 前言 1
1.2 文獻回顧與研究動機 1
1.3 論文架構 3
第二章 相關理論介紹 4
2.1 光子晶體介紹 4
2.1.1 布洛赫定理 5
2.1.2 中心波長的調控 5
2.1.3 光子禁帶 6
2.2 實驗用光子晶體介紹 7
2.2.1 多層膜基板參數 7
2.3 布拉赫表面波計算 9
2.3.1 TM極化下布拉赫表面波模態計算 10
2.4 表面電漿波 15
2.4.1 表面電漿子共振模態 15
2.4.2 表面電漿共振激發架構 16
2.4.3 光柵耦合(grating coupler) 17
2.5 表面電漿波增強螢光 19
2.6 螢光介紹及消光效應(Quenching Effect) 20
2.7 蜘蛛絲的介紹 21
2.8 生物感測器 23
2.8.1 表面修飾 25
第三章 樣品製備與量測方法 28
3.1.1 樣品製備 28
3.1.2 基板清洗及製備 29
3.1.3 蜘蛛絲溶液製備參數 29
3.1.4 奈米結構基板之製備 30
3.2 塗佈螢光溶液(R6G) 32
3.3 SEM試片結構圖(裸露的蜘蛛絲) 34
3.4 免疫螢光抗體法 35
3.5 量測架構與方法 36
第四章 量測結果討論與分析 38
4.1 表面波激發的架構 38
4.2 R6G在試片上之量測結果與分析 40
4.2.1 實驗(一)金基板上有無蜘蛛絲的比較 40
4.2.2 實驗(二)多層膜基板上有無蜘蛛絲的比較 41
4.2.3 實驗(三) 金薄膜和多層膜試片的比較 43
4.3 IgG螢光抗體之量測結果與分析 46
4.3.1 實驗(四)在多層膜試片鋪上生物螢光 46
4.3.2 實驗(四)生物螢光濃量測 47
4.3.3 後續實驗的建議 49
第五章 結論 50
參考文獻 51
[1]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters, vol. 58, pp. 2059-2062, 05/18/ 1987.
[2]S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, pp. 2486-2489, 06/08/ 1987.
[3]I. Tamm, "A possible kind of electron binding on crystal surfaces," Z. Phys, vol. 76, p. 849, 1932.
[4]R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Physical Review B, vol. 44, pp. 10961-10964, 11/15/ 1991.
[5]P. V. Aleksei, V. D. Aleksandr, M. M. Aleksandr, and A. L. Aleksandr, "Surface states in photonic crystals," Physics-Uspekhi, vol. 53, p. 243, 2010.
[6]J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999/01/25/ 1999.
[7]M. Shinn and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sensors and Actuators B: Chemical, vol. 105, pp. 360-364, 2005/03/28/ 2005.
[8]Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, "Phase properties of Bloch surface waves and their sensing applications," Applied Physics Letters, vol. 103, p. 041116, 2013/07/22 2013.
[9]M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, et al., "Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal," Applied Physics Letters, vol. 99, p. 043302, 2011/07/25 2011.
[10]E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, et al., "Surface label-free sensing by means of a fluorescent multilayered photonic structure," Applied Physics Letters, vol. 101, p. 131105, 2012/09/24 2012.
[11]L. Clark and C. Lyons, "ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY," Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 10/01/ 1962.
[12]Z. Junxi, Z. Lide, and X. Wei, "Surface plasmon polaritons: physics and applications," Journal of Physics D: Applied Physics, vol. 45, p. 113001, 2012.
[13]Z. Gryczynski, J. Malicka, I. Gryczynski, E. Matveeva, C. D. Geddes, K. Aslan, et al., "Metal-Enhanced Fluorescence: A Novel Approach to Ultra-Sensitive Fluorescence Sensing Assay Platforms," Proceedings of SPIE--the International Society for Optical Engineering, vol. 5321, pp. 275-282, 2004.
[14]K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Current Opinion in Biotechnology, vol. 16, pp. 55-62, 2005/02/01/ 2005.
[15]W. Chen, K. D. Long, H. Yu, Y. Tan, J. S. Choi, B. A. Harley, et al., "Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy," Analyst, vol. 139, pp. 5954-5963, 2014.
[16]W. Shenton, S. A. Davis, and S. Mann, "Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition," Advanced Materials, vol. 11, pp. 449-452, 1999.
[17]L. A. Chrisey, G. U. Lee, and C. E. O''Ferrall, "Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films," Nucleic Acids Research, vol. 24, pp. 3031-3039, 1996.
[18]H.-C. Wu, D. N. Quan, C.-Y. Tsao, Y. Liu, J. L. Terrell, X. Luo, et al., "Conferring biological activity to native spider silk: A biofunctionalized protein-based microfiber," Biotechnology and Bioengineering, vol. 114, pp. 83-95, 2017.
[19]E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, "Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal," JETP Letters, vol. 99, pp. 63-66, March 01 2014.
[20]I.-s. Lin, "Study of Bloch Surface Wave on One-Dimensional Photonic Crystal Substrate," 2016.
[21]C. D. Geddes and J. R. Lakowicz, "Editorial: Metal-Enhanced Fluorescence," Journal of Fluorescence, vol. 12, pp. 121-129, June 01 2002.
[22]J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Analytical Biochemistry, vol. 298, pp. 1-24, 2001/11/01/ 2001.
[23]R. Jansson, N. Thatikonda, D. Lindberg, A. Rising, J. Johansson, P.-Å. Nygren, et al., "Recombinant Spider Silk Genetically Functionalized with Affinity Domains," Biomacromolecules, vol. 15, pp. 1696-1706, 2014/05/12 2014.
[24]D. M. de C. Bittencourt, "Spider Silks and Their Biotechnological Applications," in Short Views on Insect Genomics and Proteomics: Insect Proteomics, Vol.2, C. Raman, M. R. Goldsmith, and T. A. Agunbiade, Eds., ed Cham: Springer International Publishing, 2016, pp. 211-227.
[25] http://highscope.ch.ntu.edu.tw/wordpress/?p=4328
[26] 物理雙月刊 32捲 2期 131
[27] http://big5.39kf.com/cooperate/book/05/56/2006-01-16-167664.shtml
[28] 《科學發展》2010年7月,451期,40 ~ 45頁
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔