[1]陳金鑫、黃孝文, OLED:有機電激發光材料與元件. 五南圖書出版股份有限公司, 2005.
[2]Jeon, Y., et al., A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Advanced Materials Technologies, 2018. 3(5): p. 1700391.
[3]Nakamura, N., et al., Organic light-emitting diode lighting with high out-coupling and reliability: Application of transparent amorphous ZnO–SiO2 semiconductor thick film. Organic Electronics, 2017. 51: p. 103-110.
[4]Giannini, S., A. Carof, and J. Blumberger, Crossover from hopping to band-like charge transport in an organic semiconductor model: Atomistic non-adiabatic molecular dynamics simulation. The Journal of Physical Chemistry Letters, 2018.
[5]Liang, J., et al., Novel blue bipolar thermally activated delayed fluorescence material as host emitter for high‐efficiency hybrid warm‐white OLEDs with stable high color‐rendering index. Advanced Functional Materials, 2018. 28(17): p. 1707002..
[6]Braveenth, R., et al., Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs. Organic Electronics, 2017. 51: p. 463-470.
[7]Huang, M., et al., Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. Dyes and Pigments, 2018. 153: p. 92-98.
[8]Wong, M.Y. and E. Zysman‐Colman, Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes. Advanced Materials, 2017. 29(22): p. 1605444.
[9]Kukhta, N.A., et al., Deep-blue high-efficiency TTA OLED using para-and meta-conjugated cyanotriphenylbenzene and carbazole derivatives as emitter and host. The Journal of Physical Chemistry Letters, 2017. 8(24): p. 6199-6205.
[10]Ammermann, D., et al., Multilayer organic light emitting diodes for flat panel displays. International Journal of Electronics and Communications, 1996. 50: p. 327-333.
[11]Orselli, E., et al., 1, 2, 3-Triazolyl-pyridine derivatives as chelating ligands for blue iridium (III) complexes. Photophysics and electroluminescent devices. Journal of Materials Chemistry, 2008. 18(38): p. 4579-4590.
[12]Adachi, C., et al., High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Applied Physics Letters, 2000. 77(6): p. 904-906.
[13]Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
[14]Chou, P.T. and Y. Chi, Osmium‐and ruthenium‐based phosphorescent materials: Design, photophysics, and utilization in OLED fabrication. European Journal of Inorganic Chemistry, 2006. 2006(17): p. 3319-3332.
[15]Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik, 1948. 437(1‐2): p. 55-75.
[16]Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
[17]Suzuki, H. and S. Hoshino, Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. Journal of Applied Physics, 1996. 79(11): p. 8816-8822.
[18]Chen, A.C., et al., Organic polarized light‐emitting diodes via förster energy transfer using monodisperse conjugated oligomers. Advanced Materials, 2004. 16(9‐10): p. 783-788.
[19]Wakimoto, T., et al., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices, 1997. 44(8): p. 1245-1248.
[20]蕭惠真, 利用據雙載子傳輸特性的主體材料製作磷光發光元件之研究. 中山大學, 碩士論文, 2013.[21]Tao, Y., et al., A simple carbazole/oxadiazole hybrid molecule: an excellent bipolar host for green and red phosphorescent OLEDs. Angewandte Chemie International Edition, 2008. 47(42): p. 8104-8107.
[22]Cai, X., et al., “Trade‐off” hidden in condensed state solvation: multiradiative channels design for highly efficient solution‐processed purely organic electroluminescence at high brightness. Advanced Functional Materials, 2018. 28(7): p. 1704927.
[23]Möller, S. and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
[24]Zhuo, M.-P., et al., WO3 nanobelt doped PEDOT:PSS layers for efficient hole-injection in quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2017. 5(47): p. 12343-12348.
[25]Lee, H., et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N’-bis (1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4, 4’-diamine interfaces. Applied Physics Letters, 2008. 93(4): p. 279.