(3.239.33.139) 您好!臺灣時間:2021/03/07 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾偉豪
研究生(外文):Wei-hao Zeng
論文名稱:具雙載子傳輸特性之二苯基甲酮與芳香胺衍生物於磷光元件應用研究
論文名稱(外文):Application of bipolar transporting diphenyl ketone/arylamine derivatives on phosphorescent devices
指導教授:陳俐吟陳俐吟引用關係
指導教授(外文):LY Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:雙載子傳輸特性材料紅色磷光元件有機發光二極體二苯基甲酮芳香胺
外文關鍵詞:bipolar transporting materialsred phosphorescence devicesdiphenyl ketonearomatic amineOrganic Light-Emitting Diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討具雙載子傳輸特性之二苯基甲酮(Diphenyl Ketone)與芳香胺基團(Arylamine)衍生物之光物理特性及其於有機發光元件之應用。首先研究各款材料的光物理特性,再根據光物理特性搭配適合的傳輸層材料與客體材料來設計紅色磷光元件,之後進行元件結構優化,探討各材料的最佳元件表現及其與材料特性間的關聯。
三款元件經由數次的元件優化後,Device LHH2 在EQE、電流效率及功率效率的效率表現為16.2%、27.6 cd/A和36.2 lm/W;Device LHH3為13%、17.9 cd/A和13.9 lm/W;Device LHH4為12.3%、20 cd/A和26.6 lm/W。其中Device LHH2的效率表現最佳,其原因在於本身的主客體摻雜的光激量子效率高達86%及LHH2材料本身具有較快的雙載子傳輸特性的緣故,因此此款材料適合用來製備高效率紅色磷光元件。
In this thesis, we studied the photophysical properties and the applications on organic light-emitting devices of bipolar transporting diphenyl ketone and aromatic amine based derivative. The developed materials were then utilized as the host of red phosphorescent devices. Suitable transporting materials and emitting dopant were chosen based on the photophysical and carrier transporting properties of the host materials. Device structures were then carefully designed to optimize the device performance.
After optimization, the device LHH2 showed 16.2%, 27.6 cd/A, and 36.2 lm/W in EQE, current efficiency and power efficiency; Device LHH3 showed 13%, 17.9 cd/A and 13.9 lm/W in EQE, current efficiency and power efficiency; Device LHH4 showed 10.2%, 20 cd/A, and 26.6 lm/W in EQE, current efficiency and power efficiency. Among them, device LHH2 had the best efficiency due to good energy transfer (photoluminescence quantum yield of the host-guest system was 86%) and balanced ambipolar charge transport. The bipolar transporting diphenyl ketone/aromatic amine derivative were suitable for highly efficient red phosphorescent organic light-emitting devices.
Therefore, this material was suitable for the production of high-efficiency red phosphorescent devices.
中文審訂書 i
英文審訂書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 有機半導體的電子傳遞方式及傳輸速度的重要性 2
1-3 研究動機及目的 4
1-4 各章節提要 4
第二章 基礎理論 5
2-1 影響OLED發光效率的因子 5
2-2 有機電激發光元件發光原理及機制 7
2-2-1 電激發光原理 7
2-2-2 螢光與磷光發光原理 9
2-2-3 主客體發光系統 11
2-3 OLED常用材料 14
2-3-1 陽極材料 14
2-3-2 電洞注入材料與電洞傳輸材料 14
2-3-3 主客體發光材料 15
2-3-4 電子注入材料與電子傳輸材料 16
2-3-5 陰極材料 17
第三章 元件製程 18
3-1 實驗流程 18
3-1-1 材料純化 18
3-1-2 基板清潔 19
3-1-3 元件蒸鍍 19
3-2元件特性量測 21
3-2-1 量測系統 21
3-2-2 元件量測步驟 21
第四章 結果與討論 23
4-1 簡介 23
4-2 主體材料的特性 23
(a) LHH2的光物理特性 27
(b) LHH3的光物理特性 29
(c) LHH4的光物理特性 31
4-3 元件的電激發光性質分析 33
第五章 結論 41
參考文獻 42
[1]陳金鑫、黃孝文, OLED:有機電激發光材料與元件. 五南圖書出版股份有限公司, 2005.
[2]Jeon, Y., et al., A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects. Advanced Materials Technologies, 2018. 3(5): p. 1700391.
[3]Nakamura, N., et al., Organic light-emitting diode lighting with high out-coupling and reliability: Application of transparent amorphous ZnO–SiO2 semiconductor thick film. Organic Electronics, 2017. 51: p. 103-110.
[4]Giannini, S., A. Carof, and J. Blumberger, Crossover from hopping to band-like charge transport in an organic semiconductor model: Atomistic non-adiabatic molecular dynamics simulation. The Journal of Physical Chemistry Letters, 2018.
[5]Liang, J., et al., Novel blue bipolar thermally activated delayed fluorescence material as host emitter for high‐efficiency hybrid warm‐white OLEDs with stable high color‐rendering index. Advanced Functional Materials, 2018. 28(17): p. 1707002..
[6]Braveenth, R., et al., Thermally stable efficient hole transporting materials based on carbazole and triphenylamine core for red phosphorescent OLEDs. Organic Electronics, 2017. 51: p. 463-470.
[7]Huang, M., et al., Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. Dyes and Pigments, 2018. 153: p. 92-98.
[8]Wong, M.Y. and E. Zysman‐Colman, Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes. Advanced Materials, 2017. 29(22): p. 1605444.
[9]Kukhta, N.A., et al., Deep-blue high-efficiency TTA OLED using para-and meta-conjugated cyanotriphenylbenzene and carbazole derivatives as emitter and host. The Journal of Physical Chemistry Letters, 2017. 8(24): p. 6199-6205.
[10]Ammermann, D., et al., Multilayer organic light emitting diodes for flat panel displays. International Journal of Electronics and Communications, 1996. 50: p. 327-333.

[11]Orselli, E., et al., 1, 2, 3-Triazolyl-pyridine derivatives as chelating ligands for blue iridium (III) complexes. Photophysics and electroluminescent devices. Journal of Materials Chemistry, 2008. 18(38): p. 4579-4590.
[12]Adachi, C., et al., High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Applied Physics Letters, 2000. 77(6): p. 904-906.
[13]Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
[14]Chou, P.T. and Y. Chi, Osmium‐and ruthenium‐based phosphorescent materials: Design, photophysics, and utilization in OLED fabrication. European Journal of Inorganic Chemistry, 2006. 2006(17): p. 3319-3332.
[15]Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik, 1948. 437(1‐2): p. 55-75.
[16]Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
[17]Suzuki, H. and S. Hoshino, Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. Journal of Applied Physics, 1996. 79(11): p. 8816-8822.
[18]Chen, A.C., et al., Organic polarized light‐emitting diodes via förster energy transfer using monodisperse conjugated oligomers. Advanced Materials, 2004. 16(9‐10): p. 783-788.
[19]Wakimoto, T., et al., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices, 1997. 44(8): p. 1245-1248.
[20]蕭惠真, 利用據雙載子傳輸特性的主體材料製作磷光發光元件之研究. 中山大學, 碩士論文, 2013.
[21]Tao, Y., et al., A simple carbazole/oxadiazole hybrid molecule: an excellent bipolar host for green and red phosphorescent OLEDs. Angewandte Chemie International Edition, 2008. 47(42): p. 8104-8107.

[22]Cai, X., et al., “Trade‐off” hidden in condensed state solvation: multiradiative channels design for highly efficient solution‐processed purely organic electroluminescence at high brightness. Advanced Functional Materials, 2018. 28(7): p. 1704927.
[23]Möller, S. and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
[24]Zhuo, M.-P., et al., WO3 nanobelt doped PEDOT:PSS layers for efficient hole-injection in quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2017. 5(47): p. 12343-12348.
[25]Lee, H., et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N’-bis (1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4, 4’-diamine interfaces. Applied Physics Letters, 2008. 93(4): p. 279.
電子全文 電子全文(網際網路公開日期:20230807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔