|
[1] optical clock, frequency comb. Available: https://www.nist.gov/programs-projects/femtosecond-laser-frequency-combs-optical-clocks [2] T. J. Kippenberg, R. Holzwarth, S. A. Diddams,”Microresonator-Based Optical Frequency Combs,” Science, vol. 332, pp. 555-559, 2011. [3] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg,” Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Physical review letter, pp. 053903, 2008. [4] T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, B. J. Eggleton,” Cascaded Four-Wave Mixing in Fiber Optical Parametric Amplifiers: Application to Residual Dispersion Monitoring,” Journal of lightwave technology, vol. 23, no. 2, pp.818-826, 2005 [5] C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. Denbaara, A. Y. Alyamani, M. El-Desouki, B. S. Ooi,” High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Optics express, vol.24, no. 18, pp.20281-20286, 2016 [6] T. Nakasyotani, H. Toda, T. Kuri, K.-I, Kitayama,” Wavelength-Division-Multiplexed Millimeter-Waveband Radio-on-Fiber System Using a Supercontinuum Light Source,” Journal of lightwave technology, vol. 24, no. 1, pp.404-410, 2006. [7] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, T. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L Gaeta,” Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Optics letter, vol. 40, no. 21, pp.5117-5120, 2015. [8] M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. Vanderslot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, K.-J. Boller,” Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths,” Optics express, vol.25, no. 2, pp.1542-1554, 2017. [9] J. K. Ranka, R. S. Windeler, A. J. Stentz,” Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics letter, vol. 25, no. 1, pp.25-27, 2000. [10] octave. Available: https://zh.wikipedia.org/wiki/Octave_(電子學) [11] M. R. E. Lamont, B. L.-Davies, D.-Y. Choi, S. Madden, B. J. Eggleton,” Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Optics express, vol.16, no. 19, pp.14938-14944, 2008. [12] B. Kuyken, X. Liu, R. M. Osgood Jr., R. Baets, G. Roelkens, W. M. J. Green,” Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-oninsulator wire waveguides,” Optics express, vol.19, no. 21, pp.20172-20181, 2011. [13] J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. Rees, P. J.M.vanderSlot, C. J. Lee, C. Fallnich, K.-J. Boller,” On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Optics express, vol.23, no. 15, pp.19596-19604, 2015. [14] J. M. Dudley, G. Genty, D. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics, vol. 78, pp. 1135-1184, 2006. [15] ta2o5 3d ball. Available: https://commons.wikimedia.org/wiki/File:Tantalum_pentoxide3D_balls.gif [16] ta2o5. Available: https://zh.wikipedia.org/wiki/五氧化二钽 [17] J.-C. Zhou, D.-T. Luo, Y.-Z. Li, and L. Zheng, "Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films," Transactions of Nonferrous Metals Society of China, vol. 19, no. 2, pp. 359-363, 2009. [18] G. Oehrlein, "Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon," Journal of applied physics, vol. 59, no. 5, pp. 1587-1595, 1986. [19] M. F. A. Muttalib, R. Y. Chen, S. J. Pearce, and M. D. Charlton, "Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 4, p. 041304, 2014. [20] C.-L. Wu, Y.-J. Chiu, C.-L. Chen, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, "Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide," Optics letters, vol. 40, no. 19, pp. 4528-4531, 2015. [21] Y.-Y. Lin, C.-L. Wu, W.-C. Chi, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, "Self-phase modulation in highly confined submicron Ta2O5 channel waveguides," Optics Express, vol. 24, no. 19, pp. 21633-21641, 2016. [22] C.-L. Wu, J.-Y. Huang, D.-H. Ou, T.-W. Liao, Y.-J. Chiu, C.-L. Chen, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee,” Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator,” Optics letters, vol. 42, no. 23, pp. 4804-4807, 2017. [23] G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Optics communications, vol. 163, no. 1, pp. 95-102, 1999. [24] A. Chu, Y. Huang, and S. Tang, "Room-temperature radio frequency sputtered Ta 2 O 5: A new etch mask for bulk silicon dissolved processes," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 2, pp. 455-459, 1999. [25] stepper. Available: https://signupmonkey.ece.ucsb.edu/wiki/index.php/Stepper_3_(ASML_DUV) [26] F. Larramendy, L. Mazenq, P. Temple-Boyer, L. Nicu,” Three-dimensional closed microfluidic channel fabrication by stepper projection single step lithography the diabolo effect,” Lab on a chip, pp. 387-390, 2012 [27] M. Shearn, K. Diest, X. Sun, A. Zadok, H. Atwater, A. Yariv, and A. Scherer, "Advanced silicon processing for active planar photonic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 6, pp. 3180-3182, 2009. [28] A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Optics express, vol. 17, no. 14, pp. 11366-11370, 2009. [29] L. Jonsson, J. Westlinder, F. Engelmark, C. Hedlund, J. Du, U. Smith, and H.-O. Blom, "Patterning of tantalum pentoxide, a high epsilon material, by inductively coupled plasma etching," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 4, pp. 1906-1910, 2000. [30] T. R. Graham, P. K. Andrew,Silicon Photonics:an introduction (2004) [31] mode radii of fiber. Available: https://www.rp-photonics.com/single_mode_fibers.html [32] single mode fiber. Available: http://www.brainkart.com/article/Single-mode-fiber_13605/ T. R. Graham, P. K. Andrew,Silicon Photonics:an introduction (2004) [33] D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, S. B. Papp,” Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides,” Physical review letter, pp. 053903, 2018.
|