(44.192.112.123) 您好!臺灣時間:2021/03/01 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許懷軒
研究生(外文):Huai-hsuan Hsu
論文名稱:利用中間區域塌陷之空芯光纖製作雙馬赫-桑德光纖感測器
論文名稱(外文):Double-MZI fiber sensors formed by a central collapse on a hollow-core fiber
指導教授:于欽平
指導教授(外文):Chin-Ping Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:Mach-Zehnder光纖干涉儀光纖感測器塌陷空芯光纖單模光纖
外文關鍵詞:collapsedMach-Zehnder interferometersingle mode fiberfiber sensorhollow core fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Mach-Zehnder光纖干涉儀感測器具有體積小、靈敏度高、抗電磁干擾等優點,而利用塌陷熔接製作的Mach-Zehnder光纖干涉儀不但製作簡單且元件結構較為堅固,因此在近幾年來已有各式各樣的結構被發表。在本論文中,我們將空芯光纖塌陷熔接於兩段單模光纖之間形成單Mach-Zehnder光纖干涉儀,接著對空芯光纖中間區域進行放電塌陷使元件成為雙Mach-Zehnder光纖干涉儀。相較於單Mach-Zehnder光纖干涉儀,雙Mach-Zehnder光纖干涉儀輸出頻譜的干涉條紋有著更大的自由頻譜範圍與消光比,使雙Mach-Zehnder光纖干涉儀更加適合被應用在環境感測方面。
我們將製作出的雙Mach-Zehnder光纖干涉儀應用於感測環境折射率、環境溫度、軸向應變及推進距離等,並得出雙Mach-Zehnder光纖干涉儀對於折射率靈敏度為218.84 nm/RIU、溫度靈敏度為14.32 pm/℃、軸向應變靈敏度為5.143×10-4 dB/με、推進距離靈敏度為-0.214 dB/mm,而實驗結果也顯示出Mach-Zehnder光纖干涉儀在經過中間區域塌陷成為雙Mach-Zehnder光纖干涉儀後,其對於環境折射率及環境溫度變化的感測靈敏度皆會大幅提升,因此可以提高元件在環境感測方面的可量測範圍及準確度。
Optical Mach-Zehnder interferometer (MZI) fiber sensors have several advantages, such as small size, high sensitivity, and immunity to electromagnetic interference. Several kinds of MZI-based fiber sensors formed by the collapse splicing have been proposed in recent year due to their simple fabrication process and strong structures. We can get a single-MZI-based fiber sensor by collapse splicing a section of HCF between two SMFs. The double-MZI-based fiber sensor we propose is fabricated by collapsed the middle region of the single-MZI-based fiber sensor by a suitable fusion parameter. Compared to the interference spectrum of single-MZI-based fiber sensors, double MZI-based fiber sensors have larger FSR and deeper extinction ratio.
The double-MZI-based fiber sensors we proposed have been applied to environment sensing. The experiment results show the sensitivities of refractive index, temperature, strain, and pushing distance of the double-MZI-based fiber sensor are 218.84 nm/RIU, 14.32 pm/℃, 5.143×10-4 dB/με, and -0.214 dB/mm, respectively. According to the experiment results, the double-MZI-based fiber sensor which fabricated by collapsed the middle region of the single-MZI-based fiber sensor has higher sensitivity in RI and temperature sensing. Otherwise, the double-MZI-based fiber sensor can also improve the measurement range and accuracy.
學位論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1光纖的發展 1
1-2 光纖干涉儀 3
1-2.1 法布立-培若光纖干涉儀(Fabry-Pѐrot fiber interferometer) 4
1-2.2 邁克生光纖干涉儀(Michelson fiber interferometer) 7
1-2.3 馬赫-桑德光纖干涉儀(Mach-Zehnder fiber interferometer) 10
1-3研究動機 12
第二章 Mach-Zehnder光纖干涉儀 13
2-1 Mach-Zehnder光纖干涉儀 13
2-2 雙Mach-Zehnder光纖干涉儀 18
第三章 雙Mach-Zehnder光纖干涉儀的製作 21
3-1元件設計 22
3-2製作元件的材料 24
3-3元件製作方法 24
第四章 雙Mach-Zehnder光纖干涉儀的干涉特性 31
4-1元件量測架設 31
4-2元件中間區域塌陷前後之比較 33
4-3元件中間塌陷區域長度之比較 35
4-4結構不對稱對於元件之影響 37
4-2感測環境溫度變化 40
第五章 Mach-Zehnder光纖干涉儀的環境感測特性 41
5-1感測環境折射率變化 41
5-2感測環境溫度變化 46
5-3感測軸向應變 51
5-4感測推進距離之變化 54
第六章 結論 57
參考文獻 58
[1]K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. IEE-London, vol. 113, pp. 1151-1158, 1966.
[2]C. Wu, Z. Y. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitivive refractive index sensing,” Opt. Exp., vol. 22, pp. 21757-21766, 2014.
[3]Z. X. Liu, C. Y. Shen, Y. K. Xiao, J. Q. Gong, J. F. Wang, T. T. Lang, C. L. Zhao, C. Q. Huang, Y. X. Jin, X. Y. Dong, Y. Zhang, Z. G. Jing, W. Peng, and Y. Semenova, “ Liquid surface tension and refractive index sensor based on a tilted fiber Bragg grating,” J. Opt. Soc. Am. B Opt. Phys., vol. 35, pp. 1282-1287, 2018.
[4]R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Exp., vol. 36, pp. 4482-4484, 2011.
[5]B. Q. Jiang, Z. Y. Bai, C. G. Wang, Y. H. Zhao, L. Zhang, and L. M. Zhou, “In-line Mach-Zehnder intereferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement,” J. Lightw. Technol., vol. 36, pp. 742-747, 2018.
[6]J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sens. J., vol. 6, pp. 605-612, 2006.
[7]Q. Z. Rong, X. G. Qiao, Y. Y. Du, D. G. Feng, R. H. Wang, Y. Ma, H. Sun, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer with a core- cladding-mode fiber end-face mirror,” Appl. Opt., vol. 52, pp. 1411-1447, 2013.
[8]D. Wu, T. Zhu, M. Deng, D.-W. Duan, L.-L. Shi, J. Y, and Y.-J. Rao,“Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt., vol. 50, pp. 1548-1533, 2011.
[9]J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[10]Y. F. Wu, Y. D. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Pérot interferometer based on special air cavity for transverse load and strain measurement,” Opt. Exp., vol. 25, pp. 9443-9448, 2017.
[11]D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B Opt. Phys., vol. 29, pp. 912-915, 2012.
[12]Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Exp., vol. 15, pp. 14123-14128, 2007.
[13]L. Yuan, T. Wei, Q. Han, H. Z. Wang, J. Huang, L. Jiang, and H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Exp., vol. 37, pp. 4489-4491, 2012.
[14]L. B. Yuan, J. Yang, Z. H. Liu, and J. X. Sun, “In-fiber integrated Michelson interferometer,” Opt. Exp., vol. 31, pp. 2692-2694, 2006.
[15]L. Jiang, L. J. Zhao, S. M. Wang, J. P. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Exp., vol. 19, pp. 17591-17598, 2011.
[16]S. S. Zhang, W. G. Zhang, S. C. Gao, P. C. Geng, and X. L. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett., vol. 37, pp. 4480-4482, 2012.
[17]Z. Ludwig, “Ein neuer Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 11, pp. 275–285, 1891.
[18]M. Ludwig, “Ueber einen Interferenzrefraktor,” Zeitschrift für Instrumentenkunde, vol. 12, pp. 89-93, 1892.
[19]J. Xu, H. H. Liu, F. F. Pang, L. Hong, Z. G. Ma, Z. W. Zhao, N. Chen, Z. Y. Chen, and T. Y. Wang, “Cascaded Mach-Zehnder interferometers in crystallized sapphire derived fiber for temperature insensitive filters,” Opt. Mat. Express., vol. 7, pp. 1406-1413, 2017.
[20]H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Exp., vol. 15, pp. 5711-5720, 2007.
[21]J. B. Liu, D. N. Wang, and L. Zhang, “Slightly tapered optical fiber with dual inner air-cavities for simultaneous refractive index and temperature measurement,” J. Lightw. Technol., vol. 34, pp. 4872-4876, 2016.
[22]Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach–Zehnder interferometer sensor,” IEEE Photon. Technol. Lett., vol. 22, pp. 1750–1752, 2010.
[23]L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer,” IEEE Photon. J., vol. 4, pp. 114-118, 2012.
[24]W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
電子全文 電子全文(網際網路公開日期:20230821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔