(3.237.97.64) 您好!臺灣時間:2021/03/04 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇慧儀
研究生(外文):Hui-Yi Su
論文名稱:三元Zn-Sb-In之相圖及 In摻雜Zn4Sb3之熱電性質探討
論文名稱(外文):Phase diagrams of ternary Zn-Sb-In systems and thermoelectric properties of In doped Zn4Sb3
指導教授:吳欣潔吳欣潔引用關係
指導教授(外文):Hsin-Jay Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:231
中文關鍵詞:Zn4Sb3六角菱面體等溫橫截面圖液相線投影圖熱電材料
外文關鍵詞:isothermal sectionThermoelectricZn4Sb3Zn-Sb-In thermoelectric materialliquidus projectionrhombohedric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近十幾年來,因為氣候的變遷與異常,使得人們不得不重視生態保護,於是人們開始提倡環保,致力於尋找乾淨可以替代的綠色能源,而熱電材料是其中的一種。熱電材料具直接將熱能轉換成電能之性質,為一種可將廢熱回收之裝置。而在眾多熱電材料中,Zn4Sb3是備受重視的中溫型熱電材料之一,因其在地求含量多且成本低,且結構為六角菱面體,而其特性為具有較低的晶格熱傳導係數(κL),根據文獻內容,Zn4Sb3於溫度400℃(673K)具有最高zT值1.3。本研究中,根據該系統之相圖資訊配置熱電合金,相圖為材料之基礎資料,其可表示合金於不同因素下有不同之相,目前並無完善之Zn-Sb-In三元系統相圖,故本實驗將致力製做完整Zn-Sb-In液相線投影圖與其於350℃(623K)之等溫橫截面圖,透過兩張相圖可以得知In在Zn4Sb3中的固溶度與探討其結構對熱電合金的影響。當相圖製備完成後會製備三元系統之熱電材料,本實驗配置三種系列,探討不同之比例In添加對Zn4Sb3合金之熱電性質的影響性。
根據研究結果,於Zn-Sb-In三元系統相圖透過實驗分析,而相圖邊界藉由三個二元子系統相圖建構,液相線投影圖存在六個首要析出相區,於Zn-Sb-In三元系統350℃之等溫橫截面圖,可確定於350℃(623K)時穩定存在兩個單相區、七個兩相區、五個三相區,而Zn4Sb3可穩定存在於350℃(623K),In於Zn4Sb3中之固溶度為0-4at%In,而在此系統發現存在一個三元相Zn5Sb4In2,其亦具有固溶度,範圍為16.5-18.5at%In與45.5-47.5%Zn。熱電性質量測部分,發現In之加入皆可有效降低熱傳導係數, In取代系列中,(Zn0.95In0.05)4Sb3合金於425℃(698K)時zT值可達1.85,而InSb摻雜於Zn4Sb3之合金中,可得到(Zn4Sb3)0.99(InSb)0.01合金於400℃(673K)時zT值可達1.82。
In cope with the environmental protection and energy sustainability, the development of thermoelectric (TE) materials and devices has grown enormously in the recent decade. The p-type β-Zn4Sb3 attracts great attention in the application of mid-temperature TE generator, due to the fact that the β-Zn4Sb3 comprises the cost-effective, non-toxic and earth-abundant elements. The indium acts as effective dopant and substituted in β-Zn4Sb3, and the TE transport properties of In-doped Zn4Sb3 are evaluated systematically, with respect to the varying In ratios and the effects of different secondary phases. The solubility range of In in Zn4Sb3 is about 4%and the phase stability are further understood by the construction of isothermal section and liquidus projection of ternary In-Zn-Sb system, by collecting the phase equilibrium information/solidification sequence from the thermally-equilibrated/quenched alloys, respectively.
The thermoelectric properties of In-added alloys reveals decreasing thermal conductivity and increasing Seebeck coefficient were observed in the alloy (Zn0.95In0.05)4Sb3,which exhibiting the best phase stability and highest zT value reaches ~1.85 at 425℃(698K), showing 140% enhancement compared with the pure Zn4Sb3 (~1.3). And the alloy (Zn4Sb3)0.99(InSb)0.01 from the BEI can find there is the second phase Zn, which resulting has low thermal conductivity and higher Seebeck coefficient and exhibiting the high zT value reaches 1.82 at 400℃(673K), showing 182% enhancement compared with the pure Zn4Sb3(~1.0).
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xvii
一、前言 1
二、文獻回顧 8
2.1熱電材料 8
2.2 β-Zn4Sb3熱電材料 10
2.3相圖 16
2.4 Zn-Sb二元子系統 18
2.5 In-Sb二元子系統 22
2.6 In-Zn二元子系統 24
三、實驗方法 25
3.1 Zn-Sb-In 三元系統之350℃等溫橫截面圖 25
3.2 Zn-Sb-In三元系統液相線投影圖 28
3.3 Zn-Sb-In 三元系統之熱電性質量測 28
四、結果與討論 31
4.1 Zn-Sb-In三元系統液相線投影圖 31
4.1.1 Sb首要析出相 34
4.1.2 ZnSb首要析出相區 36
4.1.3 Zn4Sb3首要析出相 41
4.1.4 Zn5Sb4In2首要析出相區 45
4.1.5 InSb首要析出相區 59
4.1.6 Zn-Sb-In 三元系統液相線投影圖結果 72
4.2 Zn-Sb-In三元系統之350℃等溫橫截面圖 73
4.2.1 InSb-ZnSb-Sb三相區 81
4.2.2 InSb-ZnSb兩相區 89
4.2.3 InSb-Zn4Sb3-Zn5Sb4In2三相區 94
4.2.4 Zn4Sb3-ZnSb 兩相區 98
4.2.5 Zn4Sb3 單相區 100
4.2.6 Zn4Sb3- Zn5Sb4In2兩相區 104
4.2.7 Zn5Sb4In2-InSb兩相區 106
4.2.8 Zn4Sb3-Zn兩相區 109
4.2.9 Zn4Sb3-Zn-Zn5Sb4In2三相區 111
4.2.10 Zn5Sb4In2-Zn兩相區 117
4.2.11 Zn5Sb4In2單相區 121
4.2.12 Zn5Sb4In2-Zn-L三相區 123
4.2.13 Zn5Sb4In2-L兩相區 132
4.2.14 Zn5Sb4In2- InSb-L三相區 136
4.2.15 InSb-L兩相區 147
4.2.16 Zn-Sb-In三元系統之350℃等溫橫截面圖結果 151
4.3 Zn-Sb-In三元系統之熱電性質 153
4.3.1 (Zn1-xInx)4Sb3之熱電性質量測 156
4.3.2 Zn4(Sb1-yIny)3之熱電性質量測 168
4.3.3 (Zn4Sb3)1-z(InSb)z之熱電性質量測 180
4.3.4 Zn-Sb-In三元系統之熱電性質量測結果 196
五、總結 207
六、參考文獻 209
[1]D. L. Medlin and G. J. Snyder, "Interfaces in bulk thermoelectric materials," Current Opinion in Colloid & Interface Science, vol. 14, pp. 226-235, 2009.
[2]D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied Thermal Engineering, vol. 66, pp. 15-24, 2014.
[3]J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, 2017.
[4]G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature materials, vol. 7, pp. 105-114, 2008.
[5]J. F. Li, W. S. Liu, D. L. Zhao, and M. Zhou, "High performance nanostructured thermoelectric materials," NPG Asia Mater, vol. 2(4), pp. 152–158, 2010.
[6]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects," Energy & Environmental Science, vol. 2, pp. 466-479, 2009.
[7]W.-H. Chen, C.-Y. Liao, and C.-I. Hung, "A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect," Applied Energy, vol. 89, pp. 464-473, 2012.
[8]J. H. Ahn, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, H. W. Lee, et al., "Thermoelectric properties of Zn4Sb3 prepared by hot pressing," Materials Research Bulletin, vol. 46, pp. 1490-1495, 2011.
[9]L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, vol. 321, pp. 1457-1462, 2008.
[10]P. Vaqueiro and A. V. Powell, "Recent developments in nanostructured materials for high-performance thermoelectrics," Journal of Materials Chemistry, vol. 20, pp. 9577-9584, 2010.
[11]M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm," Chemistry of Materials, vol. 22, pp. 648-659, 2010.
[12]P. C. Wei, C. C. Yang, J. L. Chen, R. Sankar, C. L. Chen, C. H. Hsu, et al., "Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control," Applied Physics Letters, vol. 107, p. 123902, 2015.
[13]S. Wang, X. Tan, G. Tan, X. She, W. Liu, H. Li, et al., "The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification," Journal of Materials Chemistry, vol. 22, pp. 13977-13985, 2012.
[14]M. Tsutsui, L. T. Zhang, K. Ito, and M. Yamaguchi, "Effects of in-doping on the thermoelectric properties of β-Zn4Sb3," Intermetallics, vol. 12, pp. 809-813, 2004.
[15]T. Koyanagi, K. Hino, Y. Nagamoto, H. Yoshitake, and K. Kishimoto, "Thermoelectric properties of β-Zn4Sb3 doped with Sn," International Conference on Thermoelectrics, pp. 463-466, 1997.
[16]F. Liu, X. Y. Qin, and D. Li, "The effect of In doping on thermoelectric properties and phase transition of Zn4Sb3 at low temperatures," Journal of Physics D: Applied Physics, vol. 40, pp. 4974-4979, 2007.
[17]H.-J. Gau, J.-L. Yu, C.-C. Wu, Y.-K. Kuo, and C.-H. Ho, "Thermoelectric properties of Zn–Sb alloys doped with In," Journal of Alloys and Compounds, vol. 480, pp. 73-75, 2009.
[18]Z.-H. Zheng, P. Fan, J.-T. Luo, and G.-X. Liang, "Hybridization of electronic band structure and enhancement of thermoelectric properties of ZnSb thin film by In doping," Journal of Physics and Chemistry of Solids, vol. 103, pp. 82-86, 2017.
[19]Y. Cheng, J. Yang, Q. Jiang, D. He, J. He, Y. Luo, et al., "New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance," Journal of Materials Chemistry A, vol. 5, pp. 5163-5170, 2017.
[20]T. Caillat and F. J. P, "Zn-Sb alloys for thermoelectric power generation," presented at the Proceedings of the 31st Intersociety Energy Conversion Engineering, Washington,DC, 1996.
[21]朱旭山, 熱電材料與元件之發展與應用 vol. 220: 工業材料雜誌, 2005.
[22]G. Zhu, W. Liu, Y. Lan, G. Joshi, H. Wang, G. Chen, et al., "The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound," Nano Energy, vol. 2, pp. 1172-1178, 2013.
[23]H.-X. Liu, S.-P. Deng, D.-C. Li, L.-X. Shen, F. Cheng, J.-S. Wang, et al., "Preparation and oxidation resistance of single crystalline β-Zn4Sb3," Physica B: Condensed Matter, vol. 500, pp. 9-13, 2016.
[24]S. Deng, D. Li, Z. Chen, Y. Tang, L. Shen, and S. Deng, "Electrical transport property, thermal stability and oxidation resistance of single crystalline β-Zn4Sb3 prepared using the Bi-Sn mixed-flux method," Journal of Crystal Growth, vol. 479, pp. 34-40, 2017.
[25]G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, "Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties," Nat Mater, vol. 3, pp. 458-63, Jul 2004.
[26]S.-C. Ur, I.-H. Kim, and P. Nash, "Thermoelectric properties of Zn4Sb3 processed by sintering of cold pressed compacts and hot pressing," Journal of Materials Science, vol. 42, pp. 2143-2149, 2006.
[27]G. Li, Y. Li, Q. Zhang, L. Liu, and P. Zhai, "Molecular dynamics study of the mechanical properties of single-crystal bulk β-Zn4Sb3: vacancy and temperature effects," Journal of Electronic Materials, vol. 41, pp. 1470-1475, 2012.
[28]T. Caillat, J. P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3 " Journal of Materials Chemistry Solids, vol. 58, pp. 1119–1125, 1997.
[29]T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen, X. L. Su, and X. F. Tang, "Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3," Journal of Materials Science, vol. 51, pp. 2041-2048, 2015.
[30]J. Yang, X. Zhang, B. Ge, J. Yan, G. Liu, Z. Shi, et al., "Effect of Zn migration on the thermoelectric properties of Zn4Sb3 material," Ceramics International, vol. 43, pp. 15275-15280, 2017.
[31]J. Lin, L. Ma, Z. Zheng, C. Zhou, M. Zhang, A. Xie, et al., "Metallic Zn decorated β-Zn4Sb3 with enhanced thermoelectric performance," Materials Letters, vol. 203, pp. 5-8, 2017.
[32]D. Tang, W. Zhao, J. Yu, P. Wei, H. Zhou, W. Zhu, et al., "Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant," Journal of Alloys and Compounds, vol. 601, pp. 50-56, 2014.
[33]V. P. Panchenko, N. Y. Tabachkova, A. A. Ivanov, B. R. Senatulin, and E. A. Andreev, "Preparation and properties of Zn4Sb3-based thermoelectric material," Semiconductors, vol. 51, pp. 920-923, 2017.
[34]L. Song, A. B. Blichfeld, J. Zhang, H. Kasai, and B. B. Iversen, "Enhanced thermoelectric performance and high-temperature thermal stability of p-type Ag-doped β-Zn4Sb3," Journal of Materials Chemistry A, vol. 6, pp. 4079-4087, 2018.
[35]Y. Wu, S. Lidin, T. L. Groy, N. Newman, and U. Haussermann, "Zn5Sb4In(2-δ) - a ternary derivative of thermoelectric zinc antimonides," Inorg Chem, vol. 48, pp. 5996-6003, 2009.
[36]Y. Wu, A. Tengå, S. Lidin, and U. Häussermann, "Phase relations and structural properties of the ternary narrow gap semiconductors Zn5Sb4In2−δ (δ=0.15) and Zn9Sb6In2," Journal of Solid State Chemistry, vol. 183, pp. 1574-1581, 2010.
[37]Y. Wu, A. P. Litvinchuk, E. S. Toberer, G. J. Snyder, N. Newman, A. Fischer, et al., "Thermoelectric properties of Zn5Sb4In2-δ (δ = 0.15)," Journal of Applied Physics, vol. 111, p. 123712, 2012.
[38]F. Adjadj, E.-d. Belbacha, and M. Bouharkat, "Differential calorimetric analysis of the binary system Sb–Zn," Journal of Alloys and Compounds, vol. 430, pp. 85-91, 2007.
[39]D. Manasijević, D. Minić, D. Živković, J. Vřešt’ál, A. Aljilji, N. Talijan, et al., "Experimental investigation and thermodynamic calculation of the Cu–In–Sb phase diagram," Calphad, vol. 33, pp. 221-226, 2009.
[40]C. Kolm, S. A. Kulin, and B. L. Averbach, "Studies on Group III-V Intermetallic Compounds," Physical Review, vol. 108, pp. 965-971, 1957.
[41]D. Minić, J. Đokić, D. Manasijević, D. Čikara, D. Živković, and N. Talijan, "Experimental investigation and thermodynamic calculation of phase equilibria in the In–Sb–Zn ternary system," Journal of Materials Science, vol. 45, pp. 6634-6642, 2010.
電子全文 電子全文(網際網路公開日期:20210704)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔