|
[1]D. L. Medlin and G. J. Snyder, "Interfaces in bulk thermoelectric materials," Current Opinion in Colloid & Interface Science, vol. 14, pp. 226-235, 2009. [2]D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied Thermal Engineering, vol. 66, pp. 15-24, 2014. [3]J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, 2017. [4]G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature materials, vol. 7, pp. 105-114, 2008. [5]J. F. Li, W. S. Liu, D. L. Zhao, and M. Zhou, "High performance nanostructured thermoelectric materials," NPG Asia Mater, vol. 2(4), pp. 152–158, 2010. [6]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects," Energy & Environmental Science, vol. 2, pp. 466-479, 2009. [7]W.-H. Chen, C.-Y. Liao, and C.-I. Hung, "A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect," Applied Energy, vol. 89, pp. 464-473, 2012. [8]J. H. Ahn, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, H. W. Lee, et al., "Thermoelectric properties of Zn4Sb3 prepared by hot pressing," Materials Research Bulletin, vol. 46, pp. 1490-1495, 2011. [9]L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, vol. 321, pp. 1457-1462, 2008. [10]P. Vaqueiro and A. V. Powell, "Recent developments in nanostructured materials for high-performance thermoelectrics," Journal of Materials Chemistry, vol. 20, pp. 9577-9584, 2010. [11]M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm," Chemistry of Materials, vol. 22, pp. 648-659, 2010. [12]P. C. Wei, C. C. Yang, J. L. Chen, R. Sankar, C. L. Chen, C. H. Hsu, et al., "Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control," Applied Physics Letters, vol. 107, p. 123902, 2015. [13]S. Wang, X. Tan, G. Tan, X. She, W. Liu, H. Li, et al., "The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification," Journal of Materials Chemistry, vol. 22, pp. 13977-13985, 2012. [14]M. Tsutsui, L. T. Zhang, K. Ito, and M. Yamaguchi, "Effects of in-doping on the thermoelectric properties of β-Zn4Sb3," Intermetallics, vol. 12, pp. 809-813, 2004. [15]T. Koyanagi, K. Hino, Y. Nagamoto, H. Yoshitake, and K. Kishimoto, "Thermoelectric properties of β-Zn4Sb3 doped with Sn," International Conference on Thermoelectrics, pp. 463-466, 1997. [16]F. Liu, X. Y. Qin, and D. Li, "The effect of In doping on thermoelectric properties and phase transition of Zn4Sb3 at low temperatures," Journal of Physics D: Applied Physics, vol. 40, pp. 4974-4979, 2007. [17]H.-J. Gau, J.-L. Yu, C.-C. Wu, Y.-K. Kuo, and C.-H. Ho, "Thermoelectric properties of Zn–Sb alloys doped with In," Journal of Alloys and Compounds, vol. 480, pp. 73-75, 2009. [18]Z.-H. Zheng, P. Fan, J.-T. Luo, and G.-X. Liang, "Hybridization of electronic band structure and enhancement of thermoelectric properties of ZnSb thin film by In doping," Journal of Physics and Chemistry of Solids, vol. 103, pp. 82-86, 2017. [19]Y. Cheng, J. Yang, Q. Jiang, D. He, J. He, Y. Luo, et al., "New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance," Journal of Materials Chemistry A, vol. 5, pp. 5163-5170, 2017. [20]T. Caillat and F. J. P, "Zn-Sb alloys for thermoelectric power generation," presented at the Proceedings of the 31st Intersociety Energy Conversion Engineering, Washington,DC, 1996. [21]朱旭山, 熱電材料與元件之發展與應用 vol. 220: 工業材料雜誌, 2005. [22]G. Zhu, W. Liu, Y. Lan, G. Joshi, H. Wang, G. Chen, et al., "The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound," Nano Energy, vol. 2, pp. 1172-1178, 2013. [23]H.-X. Liu, S.-P. Deng, D.-C. Li, L.-X. Shen, F. Cheng, J.-S. Wang, et al., "Preparation and oxidation resistance of single crystalline β-Zn4Sb3," Physica B: Condensed Matter, vol. 500, pp. 9-13, 2016. [24]S. Deng, D. Li, Z. Chen, Y. Tang, L. Shen, and S. Deng, "Electrical transport property, thermal stability and oxidation resistance of single crystalline β-Zn4Sb3 prepared using the Bi-Sn mixed-flux method," Journal of Crystal Growth, vol. 479, pp. 34-40, 2017. [25]G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, "Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties," Nat Mater, vol. 3, pp. 458-63, Jul 2004. [26]S.-C. Ur, I.-H. Kim, and P. Nash, "Thermoelectric properties of Zn4Sb3 processed by sintering of cold pressed compacts and hot pressing," Journal of Materials Science, vol. 42, pp. 2143-2149, 2006. [27]G. Li, Y. Li, Q. Zhang, L. Liu, and P. Zhai, "Molecular dynamics study of the mechanical properties of single-crystal bulk β-Zn4Sb3: vacancy and temperature effects," Journal of Electronic Materials, vol. 41, pp. 1470-1475, 2012. [28]T. Caillat, J. P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3 " Journal of Materials Chemistry Solids, vol. 58, pp. 1119–1125, 1997. [29]T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen, X. L. Su, and X. F. Tang, "Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3," Journal of Materials Science, vol. 51, pp. 2041-2048, 2015. [30]J. Yang, X. Zhang, B. Ge, J. Yan, G. Liu, Z. Shi, et al., "Effect of Zn migration on the thermoelectric properties of Zn4Sb3 material," Ceramics International, vol. 43, pp. 15275-15280, 2017. [31]J. Lin, L. Ma, Z. Zheng, C. Zhou, M. Zhang, A. Xie, et al., "Metallic Zn decorated β-Zn4Sb3 with enhanced thermoelectric performance," Materials Letters, vol. 203, pp. 5-8, 2017. [32]D. Tang, W. Zhao, J. Yu, P. Wei, H. Zhou, W. Zhu, et al., "Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant," Journal of Alloys and Compounds, vol. 601, pp. 50-56, 2014. [33]V. P. Panchenko, N. Y. Tabachkova, A. A. Ivanov, B. R. Senatulin, and E. A. Andreev, "Preparation and properties of Zn4Sb3-based thermoelectric material," Semiconductors, vol. 51, pp. 920-923, 2017. [34]L. Song, A. B. Blichfeld, J. Zhang, H. Kasai, and B. B. Iversen, "Enhanced thermoelectric performance and high-temperature thermal stability of p-type Ag-doped β-Zn4Sb3," Journal of Materials Chemistry A, vol. 6, pp. 4079-4087, 2018. [35]Y. Wu, S. Lidin, T. L. Groy, N. Newman, and U. Haussermann, "Zn5Sb4In(2-δ) - a ternary derivative of thermoelectric zinc antimonides," Inorg Chem, vol. 48, pp. 5996-6003, 2009. [36]Y. Wu, A. Tengå, S. Lidin, and U. Häussermann, "Phase relations and structural properties of the ternary narrow gap semiconductors Zn5Sb4In2−δ (δ=0.15) and Zn9Sb6In2," Journal of Solid State Chemistry, vol. 183, pp. 1574-1581, 2010. [37]Y. Wu, A. P. Litvinchuk, E. S. Toberer, G. J. Snyder, N. Newman, A. Fischer, et al., "Thermoelectric properties of Zn5Sb4In2-δ (δ = 0.15)," Journal of Applied Physics, vol. 111, p. 123712, 2012. [38]F. Adjadj, E.-d. Belbacha, and M. Bouharkat, "Differential calorimetric analysis of the binary system Sb–Zn," Journal of Alloys and Compounds, vol. 430, pp. 85-91, 2007. [39]D. Manasijević, D. Minić, D. Živković, J. Vřešt’ál, A. Aljilji, N. Talijan, et al., "Experimental investigation and thermodynamic calculation of the Cu–In–Sb phase diagram," Calphad, vol. 33, pp. 221-226, 2009. [40]C. Kolm, S. A. Kulin, and B. L. Averbach, "Studies on Group III-V Intermetallic Compounds," Physical Review, vol. 108, pp. 965-971, 1957. [41]D. Minić, J. Đokić, D. Manasijević, D. Čikara, D. Živković, and N. Talijan, "Experimental investigation and thermodynamic calculation of phase equilibria in the In–Sb–Zn ternary system," Journal of Materials Science, vol. 45, pp. 6634-6642, 2010.
|