(3.234.221.162) 您好!臺灣時間:2021/04/14 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何宗頴
研究生(外文):Zong-Ying Ho
論文名稱:具製程偵測波谷偵測器之LED 控制晶片應用於高效率返馳式轉換器
論文名稱(外文):LED Control Chip with Process-recognized Valley Detector Applied in High Efficiency Flyback Conveter Systems
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:90
中文關鍵詞:波谷偵測製程偵測脈寬調變LED馳返式轉換器
外文關鍵詞:flyback converterLEDvalley detectionprocess detectionPWM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
習知的LED 驅動電路系統有多種架構,本論文以交換式轉換器中的馳返式轉換器為研究主題,原因在於其具有穩定的輸出電流並可符合一般之商業安全規範。因此針對馳返式轉換器進行晶片設計,目的是為了達到準諧振邊界導通和輸出電流調整。本論文提出之方案具有負載輸出電流估算、二極體導通時間偵測,以及脈波寬度調變控制電路,以產生開關訊號。另外,本論文亦討論電路的穩定性問題,並提出了補償電路,以濾除不必要的雜訊,降低輸出漣波振幅。

為了達到準諧振模式,波谷電壓偵側器的準確性非常重要,當返馳式轉換器內部二次側電感電流不能再提供給負載時,一次側電感和功率電晶體之寄生電容發生振盪。因此可利用波谷偵測器來偵測波谷,並將此訊號送往脈寬調變電路來決定功率電晶體的導通時間。波谷訊號非常容易誤判且不準確,若是在交流電經由橋式整流完之M 型波零點時,因能量過低導致振盪的振幅太小,使波谷電壓偵測電路無法偵測訊號,功率電晶體再也無法開啟。為了避免上述情況發生,本論文提出了防護電路以避免,並且提出第二種波谷電壓偵測電路來增加精準度,使之能更準確的偵測到波谷,並達到谷值切換,具有更高的效率。另外考量到晶片製程漂移導致控制晶片失效之可能,本論文亦提出了製程偵測電路,利用偵測結果補償運算放大器之相位邊際(phase margin),以提高系統之穩定程度。

本論文之LED 驅動電路輸出電壓範圍在6~60 V,並以0.7 A 之固定電流驅動LED,並且使用單極的功率因子修正器(power factor corrector, PFC)。另外,在4顆LED 負載的情況下,可達到最大效率92.61%。
Although conventional LED drivers might be realized with different structures, we select Flyback converter design as the research topic in this thesis, The reason is that not only it provides the stability of the output current, but also meets certain safety requirement.The purpose of the proposed Flyback control chip is to achieve quasi-resonant boundary conduction and provide stable current regulation. Thus, the proposed design
comprises load output current estimation circuit, diode conduction time detection circuit,and pulse width modulation control circuit to generate a switch signal. Besides, the stability is analyzed and a compensation circuit is proposed to filter out unnecessary noise and reduce the ripple coupled in the output.


In order to achieve the quasi-resonant mode control, the accuracy of Valley Detector is very important. When the secondary side inductor current can no longer be supplied to the load, it will cause oscillation between parasitic capacitance of the primary inductor and the power transistor. As soon as the valid valley is detected, an enable signal is delivered to PWM circuit to determine the turn-on time of the power transistor. However, the valley signal is hard to be detected accurately. The worst scenario is that the wrong detection will cause that the power transistor can no longer be turned on. Therefore, a protection circuit is proposed to prevent the case and improve the accuracy such that the efficiency is enhanced. Regarding the chip process variation, a detection circuit is added, which output is used to compensate the phase margin of the operational amplifier.

The output voltage range of the LED driver based on the proposed design is 6 to 60 V, where LEDs are driven by a fixed 0.7 A with a single stage power factor corrector. As a result, it can achieve the maximum efficiency 92.61% given four LED loads.
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 柔性切換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 屏蔽時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 返馳式LED 驅動器與輸出電流回授控制電路. . . . . . . . . . . . . . . . . 14
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 LED 驅動系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 返馳式轉換器開關頻率設計. . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 返馳式轉換器之運作. . . . . . . . . . . . . . . . . . . . . . . 20
2.4 晶片電路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 二極體導通時間偵測電路設計. . . . . . . . . . . . . . . . . . 25
2.4.2 負載輸出電流估算電路設計. . . . . . . . . . . . . . . . . . . 27
2.4.3 製程偵測電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.4 回授補償電路設計. . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.5 波谷偵測電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.6 PWM 控制電路設計. . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 晶片模擬與規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.1 二極體導通時間電路模擬. . . . . . . . . . . . . . . . . . . . 49
2.5.2 製程偵測電路模擬. . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.3 誤差放大器相位邊際補償模擬與統計. . . . . . . . . . . . . . 55
2.5.4 高壓緩衝器模擬. . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.5 波谷偵測電路模擬. . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.6 脈波寬度調變控制電路模擬. . . . . . . . . . . . . . . . . . . 56
2.5.7 系統模擬整理. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 晶片實作與量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.1 晶片照相. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.6.2 晶片與系統量測結果. . . . . . . . . . . . . . . . . . . . . . . 59
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3 改良型波谷偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 振盪頻率推導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 改良型波谷偵測器架構. . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.1 屏蔽時間推導. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 改良型波谷偵測晶片模擬. . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[1] Wunan Book Co., 發光二極體發展歷史與半導體概念. [Online]. Available: http:
//http://www.wunan.com.tw/www2/download/preview/5D91.PDF.
[2] Hsienlong Inc., LED 燈與傳統照明的對比, 2012. [Online]. Available: http://http:
//www.hsienlong.com.tw/Archive/_tw/pdf.
[3] 沛亨半導體股份有限公司, 淺談離線式線性LED 驅動電路. [Online]. Available:
http://http://www.analog.com.tw/ImgAnalog.
[4] Wikipedia, LED 驅動電路. [Online]. Available: https://zh.wikipedia.org/wiki/
LEDE9A9B1E58AA8E794B5E8B7AF.
[5] Texas Instruments, TI, 隔離式與非隔離式. [Online]. Available: http://www.
dianyuan.com/upload/ti/2013/04/26/1366942035-806424.pdf.
[6] Southern Taiwan Unversity, 主動式功因修正. [Online]. Available: http://eshare.
stust.edu.tw/EshareFile/2010_4/2010_4_7ebc1433.pdf.
[7] K.-F. Cheng, “Design and modeling of power factor correction circuits,” Master’s
thesis, 國立中山大學, Jul. 2005.
[8] All about circuits, Switching Losses: Effects on Semiconductors. [Online].
Available: https://www.allaboutcircuits.com/technical-articles/
switching-losses-effects-on-semiconductors/.
[9] N. Vangala and R. Mannam, “Primary-controlled high-PF flyback converters deliver
constant DC output current,” in Proc. 2016 IEEE 1st International Conference onPower Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1 – 5,Feb. 2016.
[10] Southern Taiwan Unversity, 柔性切換. [Online]. Available: http://eshare.stust.edu.
tw/EshareFile/2010_12/2010_12_f67a7e52.pdf.
[11] H. Wu, K. Sun, Y. Li, and Y. Xing, “Fixed-frequency PWM-controlled bidirectional
current-fed soft-switching series-resonant converter for energy storage applications,”
IEEE Transactions on Industrial Electronics, vol. PP, pp. 1 – 1, Mar. 2017.
[12] S.-W. Tsai, T.-J. Liang, K.-H. Chen, and T.-W. Huang, “Primary-controlled high-PF
flyback converters deliver constant DC output current,” in Proc. 2016 IEEE Energy
Conversion Congress and Exposition (ECCE), pp. 1 – 8, Feb. 2016.
[13] Y. Xiong, S. Sun, H. Jia, P. Shea, and Z. J. Shen, “New physical insights on power
MOSFET switching losses,” in Proc.2009 IEEE Transactions on Power Electronics,
pp. 525 – 531, Feb. 2009.
[14] J. Baek, J. Shin, P. Jang, and B. Cho, “A critical conduction mode bridgeless flyback
converter,” in Proc. 2011 IEEE 8th International Conference on Power Electronics
and ECCE Asia (ICPE 2011-ECCE Asia), pp. 487–492, May 2011.
[15] Supertex, Inc., Switching power converter and method of controlling output voltage
thereof using predictive sensing of magnetic flux US 6958920 B2. [Online]. Available:
https://www.google.ch/patents/US6958920.
[16] Y.-C. Kang, C.-C. Chiu, M. Lin, C.-P. Yeh, J.-M. Lin, and K.-H. Chen, “Quasiresonant
control with a dynamic frequency selector and constant current startup technique
for 92 % peak efficiency and 85% light-load efficiency flyback converter,” IEEE
Transactions on Power Electronics, vol. 29, no. 12, pp. 4959–4969, May 2013.
[17] T.-W. Huang, “Design and implementation of a single-stage high power factor flyback
LED driver and a controller with primary-side regulation,” Master’s thesis, 國
立中山大學, Nov. 2016.
[18] J.-S. Li, T.-J. Liang, K.-H. Chen, Y.-J. Lu, and J.-S. Li, “Primary-side controller IC
design for quasi-resonant flyback LED driver,” in Proc. 2015 IEEE Energy Conversion
Congress and Exposition (ECCE), pp. 5308–5315, Sep. 2015.
[19] H. Y. Tseng, “Mixed-voltage output buffer with slew rate compensation based on
PVT variation detection,” Master’s thesis, 國立中山大學, June 2012.
[20] C. P. Basso, Switch mode power supplies spice simulations and practical designs.
New York, NY, USA: McGraw Hill, 2008.
[21] Coilcraft Inc., Coilcraft GA0007-AL flyback transformer for ON semiconductor
NCP1351. [Online]. Available: http://www.coilcraft.com/ga0007.cfm.
[22] Cree Inc., Cree XLamp XM-L EasyWhite LEDs. [Online]. Available: http:
//www.cree.com/~/media/Files/Cree/LED-Components-and-Modules/XLamp/
Data-and-Binning/XLampXML_EZW.pdf.
[23] K. Naraharisetti and P. B. Green, “Primary side regulated flyback AC-DC converter
for LED’s,” in Proc. 2015 IEEE International Conference on Electro/Information
Technology (EIT), pp. 117–121, May 2015.
[24] G. G. Pereira, M. F. de Melo, M. A. D. Costa, and J. M. Alonso, “High-power-factor
LED driver based on input current shaper using a flyback converter,” in Proc. 2015
IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–6, Oct. 2015.
[25] Z.-Y. Hou, T.-W. Huang, and C.-C. Wang, “ On-chip accurate primary-side output
current estimator for flyback LED driver control,” in Proc. 2016 International Conference
on IC Design and Technology (ICICDT), pp. 1–4, Aug. 2016.
[26] Z.-Y. Hou, Z.-Y. Ho, and C.-C. Wang, “ A primary-side output current estimator with
process compensator for flyback LED drivers,” in Proc. 2017 IEEE International
Symposium on Circuit and System (ISCAS),(accepted), May 2017.
電子全文 電子全文(網際網路公開日期:20220906)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔