(3.231.230.175) 您好!臺灣時間:2021/04/16 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖書鴻
研究生(外文):Shu-Hung Liao
論文名稱:具全分散式控制之電動車智慧充電機設計與開發
論文名稱(外文):Design and Implementation of a Fully Decentralized-Controlled Smart Charger for Electric Vehicles
指導教授:鄧人豪鄧人豪引用關係
指導教授(外文):Jen-Hao Teng
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:120
中文關鍵詞:模糊控制智慧充電機能源管理系統供電系統充電機電動車
外文關鍵詞:Smart ChargerFuzzy ControlElectric VehiclesChargerPower SystemEnergy Management System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電動車快速發展,充電機及其周邊基礎設備成為電動車發展中重要的一環。為了解決大量電動車充電可能造成之問題,相關產業必須事先研究電動車充電對供電系統所造成之衝擊,並擬定因應措施。以往的技術係利用充電站能源管理系統,藉由通訊設備將充電機的資訊回傳至中央控制中心,再透過集中控制的方式進行充電機的功率控制。然而集中控制方式較難實現於未來為數甚多且分處各地的充電機,因其分布的地理位置較廣,較難形成一監控區域。由於電網電壓可以直接反應出供電系統狀態,且同時考量到用戶的充電急迫性,對於電池殘餘容量較低之車輛,應有較高之充電優先權,然而電網電壓與電池殘餘容量並無直接關係,故本文開發一全分散式控制智慧充電機,藉由量測電網電壓以及電動車電池組的殘餘容量,並透過模糊控制器適當地調整充電機輸出功率。當電網電壓過低時,智慧充電機可根據電池組的殘餘容量調整充電機輸出功率,以降低供電系統於尖峰用電時之負擔。
為驗證本文所提出之全分散式控制電動車智慧充電機確實可有效降低電動車於充電過程中所導致之問題,本文設計一模擬平台,模擬分析充電機於充電過程中對系統之影響,並開發一小型電動車充電機,將所提出之全分散式智慧控制功能應用於小型電動車充電機,驗證本文所提出之全分散式控制電動車智慧充電機於實際運用之可行性。所設計之小型電動車充電機,包含交直流轉換器與雙相交錯式同步降壓轉換器兩部份。此外,本文所採用之雙相交錯式同步降壓轉換器可根據充電時之輸出電壓/電流,適當地調整轉換器操作於兩相交錯降壓模式或單相降壓模式,以提升轉換器於輕載時之效率,降低電池於充電過程中所導致的電能轉換損失。
With the rapid development of Electric Vehicles (EVs), charging demands increase dramatically. EV chargers become one of the most important parts of the development of EVs. In order to prevent the charging impact on power system, the relative industry must study in advance and propose the appropriate measures based on it. The centralized energy management system (EMS), which acquires the charging data to a control center and then exploits energy management method to control the chargers, has been accepted as an effective method in mitigating charging impact on power system. However, the centralized EMS is difficult to be implemented in widespread chargers. As the grid voltage can reflect the status of the power system directly, and take into account the user''s urgency of charging. The EV with lower SOC should get higher charging priority. However, there is no relationship between grid voltage and SOC. Hence, a fully decentralized-controlled smart EV charger is proposed in this thesis. The smart EV charger uses the parameters measured from the power grid and EV battery pack to adjust the charging power by Fuzzy controller. When the grid voltage is too low, the smart charger can adjust the output power of the charger according to the battery SOC. In order to reduce the charging impact on power grids during peak load.
In order to verify that the smart EV charger proposed in this thesis can mitigate the charging impact on power grids, this thesis designs a platform to simulate and analyze the influence of the power system during the charging process. This thesis also designs the small specification of EV charger which include rectifier and converter to experiment the fully decentralized-controlled smart EV charger. In order to improve the efficiency at light loads, the two-phase synchronous buck converter which used in this thesis can change its operation mode according to the charging voltage/current.
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 章節概要 5
第二章 電動車充電能源管理系統簡介 6
2.1 集中型能源管理系統 6
2.2 分散型能源管理系統 9
第三章 全分散式控制智慧充電機架構 12
3.1 模糊理論與模糊控制器簡介 12
3.2 分散式智慧控制架構 14
3.3 智慧充電機參數最佳化 20
第四章 小型電動車充電機設計與開發 31
4.1 交直流轉換器 33
4.2 雙相交錯式同步降壓轉換器 36
4.3 小型電動車充電機電路設計與開發 52
4.3.1 電感設計 52
4.3.2 開關驅動電路 55
4.3.3 取樣電路 56
4.4 小型電動車充電機程式設計流程 59
第五章 模擬及實驗結果 61
5.1 模擬結果 61
5.1.1 案例一 66
5.1.2 案例二 75
5.2 實驗結果 84
5.2.1 小型電動車充電機實測結果 84
5.2.2 分散型智慧充電機實測結果 92
第六章 結論與未來方向 99
參考文獻 101
[1]林法正,「能源國家型科技計畫-智慧電網與讀表主軸計畫規劃報告」。
[2]“Frost & Sullivan,”
[Online]. Available : https://ww2.frost.com/
[3]「電動車最普及的國家挪威:計畫2025年前全面禁售汽油車」。
[Online]. Available : http://www.seinsights.asia/article/3289/3271/4239
[4]“Global EV Outlook 2015,” Clean Energy Ministerial
[Online]. Available : http://www.cleanenergyministerial.org/
[5]M. Duvall, “Tennessee valley authority smart modal area recharge terminal (SMART) station project,” EPRI Final Report, Jun. 2010.
[6]R. Cromie and T. Wheat, “Characterizing consumers’ interest in and infrastructure expectations for electric vehicles: research design and survey results,” Final Report, May. 2010.
[7]T. Morgan, “Smart grids and electric vehicles: Made for each other?” International Transport Forum, 2012.
[8]“Transportation electrification: A technology overview EPRI Technical Report, 2011.
[9]“White paper on how the smart grid enables utilities to integrate electric vehicle,” Silver Spring Networks, 2012.
[10]“SAE International,”
[Online]. Available : http://www.sae.org/
[11]盧展南,「國家能源型計畫:電動車電能補充策略」,期中報告,2012年2月。
[12]陳在相、廖清榮、辜志承等,「電動車充電對電力品質及電力供應影響之研究」,台電公司99年度委託研究計劃期末報告,2011年5月。
[13]S. Vagropoulos, D. Kyriazidis and A. Bakirtzis, “Real-Time Charging Management Framework for Electric Vehicle Aggregators in a Market Environment,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 948–957, Mar. 2016.
[14]C. C. Shao, X. Wang, M. Shahidehpour, X. L. Wang and B. Wang, “Partial Decomposition for Distributed Electric Vehicle Charging Control Considering Electric Power Grid Congestion,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 75–83, Jan. 2017.
[15]鄧人豪、廖書鴻、溫朝凱、盧展南及江志杰,「電動車充電站供電利用率的提升方法及其系統」,研究成果專利,2013年3月。
[16]P. Richardson, D. Flynn and A. Keane, “Optimal Charging of Electric Vehicles in Low-Voltage Distribution Systems,” IEEE Trans. Power Systems, vol. 27, no. 1, pp. 268–79, June 2011.
[17]F. Hoffart, “Proper care extends Li-ion battery life,” Power Electronic Technology, Apr. 2008
[Online]. Available : http://powerelectronics.com
[18]L. Zhang and Y. Li, “Optimal Management for Parking-Lot Electric Vehicle Charging by Two-Stage Approximate Dynamic Programming,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1722–1730, July 2017.
[19]L. Zhang and Y. Li, “A Game-Theoretic Approach to Optimal Scheduling of Parking-Lot Electric Vehicle Charging,” IEEE Trans. Vehicular Technology, vol. 65, no. 6, pp. 4068–4078, June 2016.
[20]L. Gan, U. Topcu and S. Low, “Optimal decentralized protocol for electric vehicle charging,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 940–951, Sep. 2013.
[21]Z. Fan, “A distributed demand response algorithm and its application to PHEV charging in smart grids,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1280–1290, May 2012.
[22]M. Tan and O. Mohammed, “Optimal charging of plug-in electric vehicles for a car-park infrastructure,” IEEE Trans. Industry Application, vol. 50, no. 4, pp. 2323–2330, Jan. 2014.
[23]P. Richardson, D. Flynn and A. Keane, “Local Versus Centralized Charging Strategies for Electric Vehicles in Low Voltage Distribution Systems,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1020–1028, Apr. 2012.
[24]C. K. Wen, J. C. Chen, J. H. Teng and P. Ting, “Decentralized plug-in electric vehicle charging selection algorithm in power systems,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1779–1789, Dec. 2012.
[25]O. Ardakanian, S. Keshav and C. Rosenberg, “Real-time distributed control for smart electric vehicle chargers: from a static to a dynamic study,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2295-2305, Aug. 2014.
[26]A. O''Connell, D. Flynn, P. Richardson and A. Keane, “Controlled charging of electric vehicles in residential distribution networks,” Proceedings of IEEE PES International Conference on Innovative Smart Grid Technologies(ISGT), 2012.
[27]A. Dubey and S. Santoso, “Electric Vehicle Charging on Residential Distribution Systems Impacts and Mitigations,” IEEE Access, vol. 3, pp. 1871–1893, Sep. 2015.
[28]S. Deilami, A. Masoum, P. Moses and M. Masoum, “Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile,” IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 456–467, Aug. 2011.
[29]W. Su and M.-Y. Chow, “Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck,” Applied Energy, vol. 96, pp. 171–182, Aug. 2012.
[30]E. Sortomme, M. Hindi, S. MacPherson and S. Venkata, “Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses,” IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 198–205, Dec. 2011.
[31]K. Clement-Nyns, E. Haesen and J. Driesen, “The impact of charging plug-in hybrid electric vehicles on a residential distribution grid,” IEEE Trans. Power Systems, vol. 25, no. 1, pp. 371–380, Dec. 2009.
[32]Y. He, B. Venkatesh and L. Guan, “Optimal scheduling for charging and discharging of electric vehicles,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1095–1105, July 2012.
[33]J. H. Teng, S. H. Liao and C. K. Wen, “Design of a Fully Decentralized Controlled Electric Vehicle Charger for Mitigating Charging Impact on Power Grids,” IEEE Trans. Industry Application, vol. 53, no. 2, pp. 1497–1505, Mar. 2017.
[34]楊英魁,「Fuzzy控制」,全華科技圖書股份有限公司,民國八十二年。
[35]李允中、王小璠、蘇木春,「模糊理論及其應用」,全華圖書股份有限公司,民國一百零一年。
[36]J. H. Teng, “A Direct Approach for Distribution System Load Flow Solutions IEEE Trans. on Power Delivery, vol. 18, no. 3, pp. 882 -887, July 2003.
[37]符曉、朱洪順,「TMS320F2833X DSP應用開發與實踐」,北京航空航天大學出版社。
[38]“Taiwan Yuasa battery Co., Ltd. ,”
[Online]. Available : http://www.yuasa.com.tw/index.php
[39]蔡宏群,「以微控器為基礎之單相交流穩壓器研製」,大同大學電機工程系碩士學位論文,民國九十七年。
[40]許毓群,「具功因校正之數位化直流電源供應器研製」,國立台灣科技大學電機工程系碩士學位論文,民國九十七年。
[41]郭懷天,「全數位化控制的單級功因校正全橋轉換器之研製」,國立台灣科技大學電機工程系碩士學位論文,民國九十六年。
[42]高維新,「主動式功率因數修正器之設計」,逢甲大學電機工程系碩士學位論文,民國九十六年。
[43]張瑞騏,「雙向換流器之功因修正模式數位化控制」,國立中正大學電機工程系碩士學位論文,民國九十九年。
[44]許銘圳,「數位式單相主動功因修正交/直流轉換器之研製」, 國立雲林科技大學電機工程系碩士學位論文,民國九十二年。
[45]蘇仁達,「應用數位控制方法於多相DC/DC轉換器暫態響應及輕載效率之改善」,國立台灣大學電機工程系博士學位論文,民國一百年。
[46]陳思維,「具大範圍升降壓比之雙向DC/DC轉換器」,國立中山大學電機工程系碩士學位論文,民國一百零五年。
[47]J. T. Su and C. W. Liu, “A Novel Phase-Shedding Control Scheme for Improved Light Load Efficiency of Multiphase Interleaved DC–DC Converters,” IEEE Trans. Power Electronics, vol. 28, no. 10, pp. 4742-4752, Oct. 2013.
[48]A. Peterchev and S Sandersand, “Digital loss-minimizing multimode synchronous buck converter control,” IEEE Trans. Power Electronics, vol. 21, no. 6, pp. 1588-1599, Nov. 2006.
[49]C. H. Li, Y. K. Lo, H. J. Chiu and T. Y. Chen, “Accurate power-loss estimation for continuous-current-conduction-mode synchronous Buck converters,” Proceedings of IEEE International Conference on Anti-Counterfeiting, Security and Identification(ASID), 2012.
[50]N. Mohan, T. Undeland and W. Robbins, “Power Electronics, Converter, Applications and Designs,” New York: Wiley, 1989.
[51]R. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” Boulder, Colorado, 2001.
[52]“Magnetic Components for Power Conversion Unit,”
[Online]. Available : www.amogreentech.com
[53]“AMO Products,”
[Online]. Available : www.amoscore.com
[54]P. Dahono, A. Purwadi and Qamaruzzaman, “An LC Filter Design Method for Signal-Phase PWM Inverters,” Proceedings of IEEE International Conference on Power Electronics and Drive Systems(PEDS), 1995.
[55]T. Konjedic, L. Korosec, M. Truntic, C. Restrepo, M. Rodic and M. Milanovic, “DCM-Based-Zero-Voltage-Switching-Control,” IEEE Trans. Power Electronics, vol. 31, no. 4, pp. 3273-3288, Apr. 2016.
[56]J. Zhang, J. S. Lai, R. Y. Kim and W. Yu, “High-Power Density Design of a Soft-Switching High-Power Bidirectional dc–dc Converter,” IEEE Trans. Power Electronics, vol. 22, no. 4, pp. 1145-1153, July 2007.
[57]侯志英,「同步整流降壓轉換器之驅動器的研究」,國立台北科技大學,民國九十七年。
[58]S. Shao, T. Zhang, M. Pipattanasomporn and S. Rahman, “Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration,” Proceedings of IEEE PES Transmission and Distribution Conference, 2010.
[59]Nissan Leaf電動車資訊網頁
[Online]. Available : http://www.nissanusa.com
[60]M. Duvall, “Transportation Electrification-A Technology Overview,” Final Report, July 2011.
[61]J. Smart and S. Schey, “Battery Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project,” Society of Automotive Engineers World Congress, Apr. 2012.
電子全文 電子全文(網際網路公開日期:20221218)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔