(3.215.180.226) 您好!臺灣時間:2021/03/06 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉人豪
研究生(外文):Ren-Hao Liu
論文名稱:含有暫態考量的連續時間奇異系統之嚴格耗散控制
論文名稱(外文):Strictly Dissipative Control for Continuous-Time Singular Systems with Transients
指導教授:李立李立引用關係
指導教授(外文):Li Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:107
中文關鍵詞:暫態廣義 H∞控制嚴格耗散性連續時間奇異系統可容許性線性矩陣不等式
外文關鍵詞:transientsgeneralized H∞ controlstrict dissipationadmissibilitycontinuous-time singular systemsmatrix inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉著線性矩陣不等式的方法來研究含有暫態響應的連續時間奇異系統可容許性與嚴格耗散性之分析及控制器的設計問題。
首先我們藉由在與效能指標滿足設計規格等價的線性矩陣不等式條件中,引入一個變數矩陣,將奇異系統的廣義 H∞ 控制結果,推廣到可適用任何奇異系統的模型。之後,為了設計狀態回授控制器我們推出對偶形式的等價條件。此結果不但能完成現有文獻在狀態回授控制器設計的存在必要條件證明,而且在數值計算上也比現有文獻簡單。
接下來我們將含有暫態響應的奇異系統之嚴格耗散控制,與廣義 H∞ 控制連結在一起,並設計狀態回授控制器與動態輸出回授控制器達到閉迴路奇異系統之可容和嚴格耗散。
In this thesis, we study the admissibility and the strict dissipativity analysis of the continuous-time singular systems with transients and its associated controllers design by means of linear matrix inequality (LMI) techniques.
Firstly, we extend the current generalized H∞ control result to singular systems without a norm-bounded constraint on its direct path gain matrices. Such a generalization is enabled by introducing an additional variable matrix in the linear matrix inequality conditions, whose feasibility is equivalent to performance index satisfying the design criterion. To facilitate the state feedback design, we then obtain the dual form of the LMIs. This result not only fulfils the necessity proof of the existing "sufficient only" state feedback design result, but it also simplifies the numerical simulation due to less variable being involved.
Finally, in terms of the linkage between strictly dissipative control and H∞ control, we extend the approach for generalized H∞ control to addressing the state feedback control and dynamic output feedback control design so that the closed-loop singular system is admissible and strictly dissipative.
目錄
摘要 ....................................................................................................................... i
表次 ...................................................................................................................... v
圖次 ..................................................................................................................... vi
符號表 ................................................................................................................ vii
第一章 緒論 ...........................................................................................................1
1-1 節 背景與動機 ................................................................................... 1
1-2 節 論文結構 ........................................................................................2
第二章 幾個矩陣性質.............................................................................................4
第三章 連續時間可容的奇異系統廣義 H∞ 範數分析與設計....................................6
3-1 節 系統描述 ....................................................................................... 6
3-2 節 奇異系統之可容許性與廣義 H∞範數定義........................................6
3-3 節 奇異系統之可容許與廣義 H∞ 範數分析.........................................10
3-4 節 奇異系統的廣義 H∞ 狀態回授控制器設計................................... 21
3-5 節 數值模擬 ..................................................................................... 29
第四章 含有暫態響應的可容許奇異系統之嚴格耗散性分析與控制器設計 .......... 31
4-1 節 含有暫態響應的可容許奇異系統之嚴格耗散性定義...................... 31
4-2 節 含有暫態響應的可容許奇異系統的之嚴格耗散性分析 ..................33
4-3 節 狀態回授控制器設計 ................................................................... 48
4-4 節 動態輸出回授控制器設計 ............................................................ 60
4-5 節 數值模擬 ..................................................................................... 82
第五章................................................................................................................ 95
結論 .................................................................................................................. 95
參考文獻 ........................................................................................................... 96
[1] 陳亮, "基於LMI直升機奇異系統魯棒穩定控制器的設計," 吉林大學學報, vol. 27, pp. 628-633, 2009.
[2] 魯仁全, 奇異系統的魯棒控制理論: 科學出版社, 2008.
[3] A. M. Hodge and R. W. Newcomb, "Semistate theory and analog VLSI design," IEEE Circuits and
Systems Magazine, vol. 2, pp. 30-51, 2002.
[4] G. R. Duan, Analysis and Design of Descriptor Linear Systems: Springer New York, 2010.
[5] 黃祖舜, 快艇動力學: 華中理工大學出版社, 1991.
[6] L. Dai, Singular Control Systems: Springer-Verlag New York, Inc., 1989.
[7] S. Xu and J. Lam, Robust Control and Filtering of Singular Systems. Berlin: Springer, 2006.
[8] P. P. Khargonekar, K. M. Nagpal, and K. R. Poolla, "H∞ control with transients," SIAM Journal on
Control and Optimization, vol. 29, pp. 1373-1393, 1991.
[9] D. V. Balandin and M. M. Kogan, "LMI-based H∞-optimal control with transients," International
Journal of Control, vol. 83, pp. 1664-1673, 2010.
[10] Z. Feng, J. Lam, S. Xu, and S. Zhou, "H∞ control with transients for singular systems," Asian
Journal of Control, vol. 18, pp. 817-827, 2016.
[11] I. Masubuchi, "Dissipativity inequalities for continuous-time descriptor systems with applications to
synthesis of control gains," Systems & Control Letters, vol. 55, pp. 158-164, 2006.
[12] S. Xie, L. Xie, and C. E. De Souza, "Robust dissipative control for linear systems with dissipative
uncertainty," International Journal of Control, vol. 70, pp. 169-191, 1998.
[13] I. Masubuchi, "Output feedback controller synthesis for descriptor systems satisfying closed-loop
dissipativity," Automatica, vol. 43, pp. 339-345, 2007.
[14] R. Orsi, U. Helmke, and J. B. Moore, "A Newton-like method for solving rank constrained linear
matrix inequalities," Automatica, vol. 42, pp. 1875-1882, 2006.
[15] P. Gahinet and P. Apkarian, "A linear matrix inequality approach to H∞ control," International Journal
of Robust and Nonlinear Control, vol. 4, pp. 421-448, 1994.
[16] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach: Springer
New York, 2010.
[17] A. Rantzer, "On the Kalman—Yakubovich—Popov lemma," Systems & Control
Letters, vol. 28, pp. 7-10, 1996.
[18] 楊冬梅, 廣義系統: 科學出版社, 2004.
[19] I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, "H∞ control for descriptor systems: A matrix
inequalities approach," Automatica, vol. 33, pp. 669-673, 1997.
[20] D. J. Hill and P. J. Moylan, "Dissipative dynamical systems: Basic input-output and state properties,"
Journal of the Franklin Institute, vol. 309, pp. 327-357, 1980.
[21] R. Lozano, B. Brogliato, O. Egeland, and B. Maschke, Dissipative Systems Analysis and Control:
Theory and Applications, 2nd ed.: Springer London, 2006.
電子全文 電子全文(網際網路公開日期:20230331)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔