(44.192.112.123) 您好!臺灣時間:2021/03/09 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李硯儒
研究生(外文):Yen-Ju Lee
論文名稱:線性非極小相位系統之未知輸入干擾估測
論文名稱(外文):Unknown Input Estimation for LTI Non-Minimum Phase Systems
指導教授:高崇堯
指導教授(外文):Chung-Yao Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:線性非時變非極小相位系統未知輸入估測器連續時間及離散時間系統不穩定微分方程干擾估測器
外文關鍵詞:Unstable Differential EquationLTI non-minimum Phase SystemsUnknown Input ObserverDisturbance ObserverContinuous-time and Discrete-time Systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在工程領域的應用上,動態系統中的干擾會對系統的輸出造成影響。而其中一個降低干擾對系統輸出影響的方法是建構一個估測器來估測干擾訊號,再使控制命令基於估測值去消除干擾訊號所造成的影響,一般的估測器是利用系統的逆系統來達成目的,然而此方法並不適用於線性非時變非極小相位系統。此類問題的主要難處在於非極小相位零點的存在,吾人是無法直接利用系統的逆轉來設計估測器的,因為這將會造成一個不穩定估測器。

此篇論文吾人針對線性非時變非極小相位系統提出一個新穎的方法來估測系統的未知輸入,吾人所提出之方法的核心概念為「求解一不穩定微分方程的有界解」。文中,吾人提出一個數學演算法來求得此解,並適用於連續時間系統模型以及離散時間系統模型。
In real-world applications, the output performance of a dynamical system is often affected by external disturbances. One way to reduce, or even eliminate, the influence of the disturbance is to construct a observer to estimate the disturbance signal, so that a control action based on the disturbance estimate can be taken to against its effect. In general, an input disturbance observer can be constructed based on the inverse of the plant dynamics, but this method is not applicable when the plant has non-minimum phase zeros. In this case, inverting the non-minimum phase zeros would result in unstable dynamics, and hence an unstable observer, which is unacceptable.

In this thesis we propose a novel approach for designing input disturbance observers for LTI non-minimum phase systems. The core concept of the method that we proposed lies in finding a bounded solution of an unstable differential equation. Based on this concept,
a mathematical algorithm is developed to "inverse" the effect of non-minimum phase zeros without incurring unbounded signals. The technique is then applied in building input disturbance observers for continuous-time and discrete-time LTI non-minimum phase systems. The effect of our approach is verified by several numerical examples and compared with the existing methodologies in the literature.
誌謝i
中文摘要ii
英文摘要iii
目錄 iv
圖目錄vi
表目錄viii
第一章 緒論1
1.1 簡介與文獻回顧1
1.2 研究動機、目的與貢獻4
1.3 論文架構5
第二章 求解不穩定常微分方程之有界解6
2.1 問題描述6
2.2 求解不穩定微分方程7
2.3 解的存在與唯一性11
第三章 基於UZ逆轉之未知輸入估測器架構 18
3.1 連續時間估測器架構18
3.2 改良之連續時間估測器架構21
3.3 即時估測演算法之細節31
3.3.1 結合頻率估測器之即時演算法31
3.3.2 UZ 逆轉之改善33
第四章 離散時間版本36
4.1 求解不穩定差分方程36
4.2 離散時間估測器架構40
4.3 改良之離散時間估測器架構43
第五章 數值模擬結果46
5.1 連續時間未知輸入估測器模擬46
5.2 連續時間改良之未知輸入估測器模擬56
5.3 離散時間未知輸入估測器模擬58
5.4 離散時間改良之未知輸入估測器模擬63
第六章 結論與未來展望 65
參考文獻 66
[1] K. J.Åström,R.E.Klein,andA.Lennartsson,“Bicycle dynamics and control,”IEEE Control Systems Magazine,vol.25,no.4,pp.26–47,2005.
[2] J. HagandD.Bernstein,“Nonminimum-phase zeros-much to do about nothing-classical control-revisited partII,”IEEE Control Systems Magazine,vol.3,no.27,pp.45–57,2007.
[3] K. H.ZaadandK.Khorasani,“Control of non-minimum phase singularly perturbed systems with application of lexible-link manipulators,”International Journal of Control,vol.63,no.4,pp.679–701,1996.
[4] K. CohenandD.Bossert,“Fuzzy logic non-minimum phase autopilot design,”in AIAA Guidance,Navigation,and Control Conference and Exhibit,2003,p.5550.
[5] J. Hauser,S.Sastry,andG.Meyer,“Nonlinear control design for slightly non-minimumphase systems: Application to V/STOL aircraft,”Automatica,vol.28,no.4,pp.665–679,1992.
[6] K. J.ÅströmandR.D.Bell,“Drum-boilerdynamics,”Automatica,vol.36,no.3,pp.363–378,2000.
[7] R. H.Middleton,“Trade-offs in linear control system design,”Automatica,vol.27,no.2,pp.281–292,1993.
[8] T.Umeno,T.Kaneko,andY.Hori,“Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators,”IEEE Transactionson Industrial Electronics,vol.40,no.5,pp.473–485,1993.
[9] H. ShimandN.H.Jo,“An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer,” Automatica, vol.45,no.1,pp.296–299, 2009.
[10] S. N.D.KönigandA.Bourjij,“New design of robust observers for fault detection and isolation,”in Proceedings of IEEE Conference on Decision and Control,1996,pp.1464–1467.
[11] D. M.TrujilloandH.R.Busby, Practical Inverse Analysis In Engineering. CRCpress,1997.
[12] J. C.SantamarinaandD.Fratta, Discrete Signals And Inverse Problems:An Introduction For Engineers And Scientists.JohnWiley&Sons,2005.
[13] Y.I.Son,H.Shim,N.H.Jo,andS.-J.Kim,“Design of disturbance observer for non-minimum phase systems using PID controllers,”in Proceedings of 2007 SICE Annual Conference,2007,pp.196–201.
[14] H. Shim,N.H.Jo,andY.-I.Son,“A new disturbance observer for non-minimum phase linear systems,” in Proceedings of the 2008 American Control Conference,2008,pp.3385–3389.
[15] X. Chen,G.Zhai,andT.Fukuda,“Anapproximate inverse system for nonminimum-phase systems and its application to disturbance observer,”Systems & Control Letters,vol.52,no.3-4,pp.193–207,2004.
[16] M.-S. ChenandC.-C.Chen,“H∞ optimal design of robust observer against disturbances,” International Journal of Control,vol.87,no.6,pp.1208–1215,2014.
[17] M.-S. Chen,S.-Y.Lin,M.-L.Tseng,Y.-L.Yeh,andJ.-Y.Yen,“Robuststate-and-disturbance observer design for linear non-minimum-phase systems,”Asian Journal of Control,vol.18,no.3,pp.1135–1141,2016.
[18] J. C.Doyle,B.A.Francis,andA.R.Tannenbaum, Feedback Control Theory.Courier Corporation,2013.
[19] S.-Y.Lin,J.-Y.Yen,M.-S.Chen,S.-H.Chang,andC.-Y.Kao,“Anadaptive unknown periodic input observer for discrete-time LTI SISO systems,”IEEE Transactions on Automatic Control,vol.62,no.8,pp.4073–4079,2017.
[20] P.A.Regalia,“An improved lattice-based adaptive IIR notch filter,”IEEE Transactions on Signal Processing,vol.39,no.9,pp.2124–2128,1991.
[21] M. BodsonandS.C.Douglas,“Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency,”Automatica,vol.33,no.12,pp.2213–2221,1997.
[22] L. Hsu,R.Ortega,andG.Damm,“A globally convergent frequency estimator,”IEEE Transactions on Automatic Control,vol.44,no.4,pp.698–713,1999.
[23] M. MojiriandA.R.Bakhshai,“An adaptive notch filter for frequency estimation of a periodic signal,”IEEE Transactions on Automatic Control,vol.49,no.2,pp.314–318,2004.
[24] 朱冠肇, “基於求解不穩定微分方程之適用於非極小相位系統的控制方法,”國立台灣大學工學院機械工程學研究所碩士論文,民國104年.
[25] S. SastryandM.Bodson,Adaptive Control:Stability,Convergence And Robustness.Courier Corporation, 2011.
[26] B. RiedleandP.Kokotovic,“Integral manifolds of slow adaptation,”IEEE Transactionson Automatic Control,vol.31,no.4,pp.316–324,1986.
[27] K. S.Narendra,Frequency Domain Criteria For Absolute Stability.Elsevier,2014.
[28] M. Bodson,J.S.Jensen,and S.C.Douglas,“Active noise control for periodic disturbances,IEEE Transactions on Control Systems Technology,vol.9,no.1,pp.200–205,2001.
[29] A. Routray,A.K.Pradhan,and K.P.Rao,“A novel Kalman filter for frequency estimation of distorted signals in power systems,”IEEE Transactions on Instrumentation and Measurement,vol.51,no.3,pp.469–479,2002.
[30] P.A.Regalia,S.K.Mitra,and P.Vaidyanathan,“The digital all-pass filter:A versatile signal processing building block,”Proceedings of the IEEE,vol.76,no.1,pp.19–37,1988.
[31] L. Ljung,“Analysis of recursive stochastic algorithms,”IEEE Transactions on Automatic Control, vol.22,no.4,pp.551–575,1977.
[32] H. Fan,“Application of Benveniste’s convergence results in the study of adaptive IIR filtering algorithms,”IEEE Transactions on Information Theory,vol.34,no.4,pp.692–709,1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔