(3.232.129.123) 您好!臺灣時間:2021/03/06 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:官志遠
研究生(外文):Chih-yuan Kuan
論文名稱:擴大功率與反向傳送的水下聲波感測網路
論文名稱(外文):Power Enlargement and Reverse Transmission for Underwater Acoustic Sensor Networks
指導教授:許蒼嶺
指導教授(外文):Tsang-Ling Sheu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:66
中文關鍵詞:水下聲波感測網路封包延遲能量消耗反方向傳送同方向擴大功率傳送
外文關鍵詞:Underwater Acoustic NetworkJumpOppositeEnergyConsumptionPacket Delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在目前的水下聲波感測網路中,感測器容易損壞且不易更換電池,因此本論文提出一個三角形拓樸的水下感測網路架構,並在此架構中提出一個同方向擴大功率傳送與反方向傳送的機制,同方向擴大功率是用於當某個感測節點無法正常運作時,前一個感測節點可以將功率擴大,以跳過(Jump)無法正常運作的感測節點,將資料封包成功傳送至下一個中繼節點。反方向傳送是用於當某個感測節點無法正常運作時,前一個感測節點可以傳送資料封包至反方向的中繼節點,再由中繼節點轉傳至反方向的蒐集點。為了完成上述的兩個機制,每個感測節點會週期性的量測與兩端蒐集點的來回時間(Round-Trip Time, RTT),當一個感測節點收集到資料後會選擇來回時間較短的方向傳送,並透過中繼節點的轉傳將資料封包傳送至蒐集點,當一個感測節點傳送或轉傳資料封包給下一個感測節點時,會等待下一個感測節點回傳的Ack,若到達重傳上限值時,此感測節點依然沒有收到下一個感測節點的Ack,表示下一個感測節點無法正常運作,此時感測節點就會選擇同方向擴大功率傳送或反方向傳送,將資料封包傳送至蒐集點。最後,我們推導數學公式來計算同方向擴大功率傳送與反方向傳送的能量消耗與端點到端點的平均封包延遲,我們改變節點總數、節點之間的距離與封包長度,來分析使用同方向擴大功率傳送與反方向傳送的能量消耗與封包延遲的差異。
In the current underwater acoustic sensor network, the sensor is located in the deep sea and has the disadvantages of being easily damaged and difficult to replace the battery. Therefore, this paper proposes a triangular topology in the underwater acoustic sensing network, and in this architecture, a mechanism to increase the power transmission and reverse transmission in the same direction is proposed. When the sensor transmits the packet, it encounters a situation in which the packet cannot be transmitted normally. The sensor retransmits and waits for the next node to return the packet. If reaching the retransmission upper limit value, the sensor still does not receive the returned Ack, indicating that the next node cannot work normally. At this time, the sensor will calculate the energy consumption between jump and opposite,choose the way that the energy consumption is smaller direction and transmitting the data package.We derive the mathematical formula to calculate the energy consumption and packet delay of the jump and opposite direction transmission. We use Matlab for numerical analysis, and derived mathematical formulas. In the numerical analysis, we change the total number of nodes, the distance, and the length of packets to analyze Energy consumption and packet delay in the underwater acoustic sensor network.
論文審定書 i
致謝 ii
目錄 iii
圖表目錄 v
摘要 vii
Abstract viii
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 章節介紹 3
第二章 水下聲波感測網路 4
2.1 水下感測器 4
2.2 水下感測網路的架構 6
2.3 水下聲波感測網路的傳輸功率 8
2.4 相關文獻比較 8
2.5 本論文提出的PERTA機制 12
第三章 擴大功率與反向傳送機制 14
3.1 ASNTT系統架構 14
3.2 PERTA 15
3.2.1 Sensor傳送或轉傳資料封包的流程 16
3.2.2 ASNTT無法正常運作的狀況 19
3.3同方向擴大功率傳送與反向傳送的能量消耗 22
3.3.1 同方向擴大功率傳送的能量消耗 22
3.3.2 反方向傳送的能量消耗 26
3.3.3 平均能量消耗 31
3.4 平均封包延遲 35
3.4.1 同方向擴大功率傳送的平均封包延遲 35
3.4.2 反方向傳送的平均封包延遲 37
第四章 分析與結果討論 40
4.1 模擬拓樸 40
4.2 節點之間距離皆相同 41
4.2.1 改變二個節點間的距離 41
4.2.2 改變二個Sinks之間節點個數 43
4.3 節點間的距離皆不相同 45
第五章 結論與未來工作 48
5.1 結論 48
5.2 未來工作 49
REFERENCES 50
ACRONYMS 55
INDEX 56
[1] M. Lin, T. Hirayama, and S. Oyanagi “Underwater-Drone with Panoramic Camera for Automatic Fish Recognition based on Deep Learning” IEEE Access,Vol. 6, pp.17880-17886, Mar. 2018.
[2] N. Mohamed, I. Jawhar, J. Al-Jaroodi, and L. Zhang “Monitoring Underwater Pipelines using Sensor Networks” International Conference on High Performance Computing and Communications (HPCC), pp. 1-3,Sep. 2010.
[3] A. Sehgal, C. David, and J. SchOnwalder “Energy Consumption Analysis of Underwater Acoustic Sensor Networks” OCEANS, pp. 19-22, Sep. 2011.
[4] N. Morozs, P. Mitchell, and Y. Zakharov “TDA-MAC: TDMA without Clock Synchronization in Underwater Acoustic Networks” IEEE Access,Vol. 6, pp.1091-1108, Nov. 2017.
[5] R. Zhang, X. Cheng, X. Cheng, and L. Yang “ Interference-Free Graph based TDMA Protocol for Underwater Acoustic Sensor Networks” IEEE Transactions on Vehicular Technology, Vol. 67, Issue 5, pp. 4008-4019, May 2018.
[6] P. Anjangi and M. Chitre “Propagation-Delay-Aware Unslotted Schedules with Variable Packet Duration for Underwater Acoustic Networks” IEEE Journal of Oceanic Engineering, Vol. 42, Issue 4, pp. 997-993, Jan. 2017.
[7] R. Diamant, P. Casari, F. Campagnaro, and M. Zorzi “Routing in Multi-Modal Underwater Networks: a Throughput-Optimal Approach” Computer Communications Workshops, pp.205-210, May 2017.
[8] R. Diamant, R. Francescon, and M. Zorzi “Efficient Link Discovery for Underwater Networks” IEEE Underwater Communications and Networking Conference (UComms), pp.1-4, Oct. 2016.
[9] F. Campagnaro, F. Guerra, P. Casari, R. Diamant, and M. Zorzi “Implementation of A Multi-Modal Acoustic-Optical Underwater Network Protocol Stack” OCEANS, pp.1-6, Jun. 2016.
[10] L. Jing, C. He, J. Huang, and Z. Ding “Energy Management and Power Allocation for Underwater Acoustic Sensor Network” IEEE Sensors Journal, Vol. 17, Issue 19, pp. 6451-6462, Oct. 2017.
[11] M. Jouhari, K. Ibrahimi, and M. Benattou “Topology Control through Depth Adjustment and Transmission Power Control for UWSN Routing Protocols” International Conference on Wireless Networks and Mobile Communications (WINCOM), pp.1-5, Oct. 2015.
[12] D. E. Lucani, M. Stojanovic, and M. Medard “On the Relationship between Transmission Power and Capacity of An Underwater Acoustic Communication Channel” OCEANS, pp.1-6, May 2008.

[13] M. A. Rahman, Y. Lee, and I. Koo “An Energy-Efficient Cooperative Opportunistic Routing Protocol for Underwater Acoustic Sensor Networks” IEEE Access, Vol. 5, pp. 14119-14132, Jul. 2017.
[14] Y. Chen, X. Jin, and X. Xu “Energy-Efficient Mobile Data Collection Adopting Node Cooperation in An Underwater Acoustic Sensor Network” China Communications, Vol. 14, Issue 6, pp. 32-42,Jun. 2017.
[15] F. Bouabdallah, C. Zidi, and R. Boutaba “Joint Routing and Energy Management in Underwater Acoustic Sensor Networks” IEEE Transactions on Network and Service Management,Vol. 14, Issue 2, pp. 456-471,Mar. 2017.
[16] A. Radhakrishnan “Robust Energy-Efficient Adaptive Routing(REAR) Protocol for Underwater Sensor Networks” International Conference on Circuit ,Power and Computing Technologies (ICCPCT), pp.1-6, Apr. 2017.
[17] R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, and A. A. F. Loureiro “EnOR: Energy Balancing Routing Protocol for Underwater Sensor Networks” IEEE International Conference on Communications (ICC), pp.1-6, May 2018.
[18] T. Ahmed, M. Chaudhary, M. Kaleem, and S. Nazir “Optimized Depth-based Routing Protocol for Underwater Wireless Sensor Networks” International Conference on Open Source Systems and Technologies (ICOSST), pp. 147-150, Feb. 2017.
[19] K. Wang, Y. Tian, and Y. Shi “Energy Balanced Pressure Routing Protocol for Underwater Sensor Networks” International Computer Symposium (ICS), pp. 216-220, Dec.2016.
[20] X. Chen and G. Lin “Energy Efficient Routing Protocol for Underwater Acoustic Networks using Shortest Path Algorithm” International Conference on Information Science and Control Engineering (ICISCE), pp. 295-300, Jul. 2017.
[21] M. Sajid, A. H. Khan, S. Gull, K. Khan, M. Imran, and N. Javaid “SMPC: Singular Division of Multipath Power Control Tree based Routing Protocol for Underwater Wireless Sensor Networks” Wireless Communications and Mobile Computing Conference (IWCMC), pp.1641-1647,Jul. 2017.
[22] D. Das and Dr. Ameer “Energy Efficient Geographic Clustered Multi-hop Routing for Underwater Sensor Networks”Region 10 Conference, pp. 2159-3450, Nov.2017.
[23] A. Akhter, Md. A. Uddin, and Md. A. I. Abir “Noise Aware Level based Routing Protocol for Underwater Sensor Networks” International Workshop on Computational Intelligence (IWCI), pp. 169-174, Feb. 2017.
[24] B. Ayaz, A. Allen, and M. Wiercigroch “Improving Routing Performance of Underwater Wireless Sensor Networks” OCEANS, pp. 1-9, Jul. 2017.
[25] M. Sathish, K. Arumugam, and S. N. Pari “Triangular Metric based Routing Protocol for Underwater Wireless Sensor Network” International Conference for Convergence in Technology (I2CT), pp.1239-1245, Apr. 2017.
[26] S. H. Ahmeda, S. Leeb, J. Park, D. Kimc, and D. B. Rawat “IDFR: Intelligent Directional Flooding-based Routing Protocols for Underwater Sensor Networks” IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 560-565, Jul. 2017.
[27] M. Faheem, G. Tuna, and V. C. Gungor “QERP: Quality-of-Service (QoS) Aware Evolutionary Routing Protocol for Underwater Wireless Sensor Networks” IEEE Systems Journal, Issue 99, pp. 1-8, Mar. 2017.
[28] S. Hussain, N. Javaid, Muhammad, I. Ahmad, U. Qasim, and Z. A. Khan “Performance Analysis of Amplify and Forward Technique in Region based Cooperative Routing for Underwater Wireless Sensor Networks” International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 34-41, Dec.2016.
[29] A. Majid, I. Azam, T. Khan, Sangeen1, Z. A. Khan, U. Qasim, and N. Javaid1 “A Reliable and Interference-Aware Routing Protocol for Underwater Wireless Sensor Networks” International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 245-255, Jul. 2016.
[30] S. Han, J. Yue, W. Meng, and X. Wu “A Localization based Routing Protocol for Dynamic Underwater Sensor Networks” Global Communications Conference (GLOBECOM), pp. 1-6, Feb. 2017.
[31] J. S. Abbasi, N. Javaid, S. Gull1, S. Islam, M. Imran, N. Hassan, and K. Nasr “Balanced Energy Efficient Rectangular Routing Protocol for Underwater Wireless Sensor Networks” International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1634-1640, Jul. 2017.
[32] A. Walayat, N. Javaid, M. Akbar, and Z. A. Khan “MEES: Mobile Energy Efficient Square Routing for Underwater Wireless Sensor Networks” International Conference on Advanced Information Networking and Applications, pp. 292-297, May 2017.
[33] M. Sajid, A. Wahid, K. Pervaiz, M. Khizar, Z. A. Khan, U. Qasim, and N. Javaid1 “SMIC: Sink Mobility with Incremental Cooperative Routing Protocol for Underwater Wireless Sensor Networks” International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 33-41, Dec. 2016.
電子全文 電子全文(網際網路公開日期:20230712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔