|
[1]R. Ruby, P. Bradley, J. D. Larson and Y. Oshmyansky, “PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs)”, Electronics Letters, vol. 35, pp. 794-795, 1999. [2]P. D. Bradley, J. D. Larson, III and R. C. Ruby, “Duplexer incorporating thin-film bulk acoustic resonators (FBARs)”, US Patent No. 6262637B1, 2001. [3]R. Ruby, “Review and Comparison of Bulk Acoustic Wave FBAR, SMR Technology”, IEEE Ultrasonics Symposium, pp. 1029-1040, 2007. [4]H. Martin, G. Bernhard, F. Martin and M. Kabula, “Stacked crystal resonator: A highly linear BAW device”, IEEE International Ultrasonics Symposium, pp. 889-892, 2010. [5]E. Ginsburg, D. Etgar-Diamant and L. P. Wang, “Film bulk acoustic resonator (FBAR) process using single-step resonator layer deposition“, US Patent No. 7299529B2, Intel Corporation, 2006. [6]J. Ellä and R. Aigner, “Coupled BAW resonator based duplexers”, US Patent No. 6963257B2, 2005. [7]M. Takeuchi, H. Yamada and Y. Goto, “Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device”, US Patent No. 6737940B2, 2004. [8]J. W. Jang and K. H. Sunwoo. “Film bulk acoustic resonator and method of forming the same”, US Patent No. 6992420B2, 2006. [9]于毅,“RF AlN薄膜體聲波諧振器“,北京清華大學碩士論文,2004。 [10]Y. C. Chen, W. C. Shih, W. T. Chang, C. H. Yang, K. S. Kao and C. C. Cheng, “Biosensor for human IgE detection using shear-mode FBAR devices”, Nanoscale Research Letters, vol. 69, 2015. [11]K. W. Tay, C. L. Huang and L. Wu, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics”, Japanese Journal of Applied Physics, vol. 43, pp. 1122-1126, 2004. [12]錢梁,“基於深槽隔離科技的體矽MEMS單片集成科技研究”,北京大學碩士論文,2012。 [13]C. M. Yang, K. Uehara, Y. Aota, S. K. Kim, S. Kameda, H. Nakase, Y. Isota and K. Tsubouchi, “Growth of AlN film on Mo/SiO2/Si (111) for 5 GHz-band FBAR using MOCVD”, IEEE Ultrasonics Symposium, pp. 165-168, 2005. [14]G. Yoon and J. D. Park, “Fabrication of ZnO-based film bulk acoustic resonator devices using W/SiO/sub 2/ multilayer reflector”, Electronics Letters, vol. 36, pp. 1435-1437, 2000. [15]J. E. A. Southin, and R. W. Whatmore, “Finite element modelling of nanostructured piezoelectric resonators (NAPIERs)”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 654-662, 2004. [16]H. Zhang, J. Kim, W. Pang, H. Yu and E. S. Kim, “5GHz low-phase-noise oscillator based on FBAR with low TCF”, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ''05, vol. 1, pp. 1100-1101, 2005. [17]焦海龍、趙廣宏、李文博、駱 偉、金小鋒,“RF MEMS國內外現狀及發展趨勢”,北京遙測技術研究所,2018。 [18]F. H. Villa-López, G. Rughoobur, S. Thomas, A. J. Flewitt, M. Cole and J. W. Gardner, “Design and modelling of solidly mounted resonators for low-cost particle sensing”, Measurement Science & Technology, vol. 27, 2016. [19]Y. Tang, Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu and X. Zu, “Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol–gel SiO2, films: Investigations on the sensing property and mechanism”, Sensors & Actuators B Chemical, vol. 215, pp. 283-291, 2015. [20]Y. Yao, H. Zhang, J. Sun, W. Ma, L. Lin, W. Li and J. Du, “Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film”, Sensors & Actuators B Chemical, vol. 244, pp. 259-264, 2017. [21]M. Nirschl, A. Rantala, K. Tukkiniemi, S. Auer, A. Hellgren, D. Pitzer, M. Schreiter and I. Vikholm-Lundin,“CMOS-integrated film bulk acoustic resonators for label-free biosensing”, Sensors, vol. 10, pp. 4180-4193, 2010. [22]G. Wingqvist, J. Bjurström, A. Hellgren and I. Katardjiev, “Immunosensor utilizing a shear mode thin film bulk acoustic sensor.” Sensors & Actuators B Chemical, vol. 127, pp. 248-252, 2007. [23]G. Rughoobur, M. DeMiguel-Ramos, J. M. Escolano, E. Iborra and A. J. Flewitt, “Gravimetric sensors operating at 1.1 GHz based on inclined c-axis ZnO grown on textured Al electrodes”, Scientific Reports 7, 2017. [24]C.D. Corso, A. Dickherber, and W. D. Hunt, “Lateral field excitation of thickness shear mode waves in a thin film ZnO solidly mounted resonator”, Journal of Applied Physics, vol. 101, 2007. [25]J. Iannacci and F. B. Kessler, “RF MEMS: AN OVERVIEW OF PACKAGING TECHNIQUES”, Retrieved January 16, 2014, from MEMS Journal on the World Wide Web: h ttp://www.memsjournal.com/2014/01/rf-mems-devices-an-overview-of-packaging-techniques-.html [26]I. S. Song, Y. K. Park, B. J. Ha and J. S. Hwang, “Air-gap type FBAR, method for fabricating the same, and filter and duplexer using the same”, US Patent No. 7053730B2, 2006. [27]Y. U. Kang, S. C. Kang, K. K. Paek, Y. K. Kim, S. W. Kim and B. K. Ju, “Air-gap type film bulk acoustic resonator using flexible thin substrate”, Sensors & Actuators A Physical, vol. 117, pp. 62-70, 2005. [28]S. Taniguchi, T. Yokoyama, M. Iwaki, T. Nishihara, M. Ueda and Y. Satoh, “7E-1 An Air-Gap Type FBAR Filter Fabricated Using a Thin Sacrificed Layer on a Flat Substrate”, IEEE Ultrasonics Symposium, pp. 600-603, 2007. [29]K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004. [30]L. Qin, Q. Chen, H. Cheng and Q. M. Wang, “Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, pp. 1840-1853, 2010. [31]R. C. Lin., K. S. Kao., C. C. Cheng and Y. C. Chen, “Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Films, vol. 516, pp. 5262-5265, 2008. [32]Y. Kumar, K. Rangra and R. Agarwal, “Design and simulation of FBAR with different electrodes material configuration”, International Journal of Engineering Trends and Technology, vol. 28, pp. 294-299, 2015. [33]T. Y. Lee, and J. T. Song, “Detection of carcinoembryonic antigen using AlN FBAR.” Thin Solid Films, vol. 518, pp. 6630-6633, 2010. [34]G. Sharma, L. Liljeholm, J. Enlund, J. Bjurström, I. Katardjiev and K. Hjort, “Fabrication and characterization of a shear mode AlN solidly mounted resonator-silicone microfluidic system for in-liquid sensor applications”, Sensors & Actuators A Physical, vol. 159, pp. 111-116, 2010. [35]Y. Liu, Y. Shen, F. Duan, Y. Zhang, Z. Lin, H. L. Hwang and Y. Zhang, “Solidly mounted resonators fabricated for GHz frequency applications based on MgxZn1-xO piezoelectric film”, Vacuum, vol. 141, pp. 254-258, 2017. [36]E. Iborra, M. Clement, J. Capilla, J. Olivares and V. Felmetsger, “Low-thickness high-quality aluminum nitride films for super high frequency solidly mounted resonators”, Thin Solid Films, vol. 520, pp. 3060-3063, 2012. [37]M. DeMiguel-Ramos, T. Mirea, J. Olivares, M. Clement, J. Sangrador and E. Iborra, “Assessment of the shear acoustic velocities in the different materials composing a high frequency solidly mounted resonator”, Ultrasonics, vol. 62, pp. 195-199, 2015. [38]M. DeMiguel-Ramos, J. Olivares, T. Mirea, M. Clement, E. Iborra, G. Rughoobur, L. Garcia-Gancedo, A. J. Flewitt and W. I. Milne, “The influence of acoustic reflectors on the temperature coefficient of frequency of solidly mounted resonators”, IEEE International Ultrasonics Symposium, pp. 1472-1475, 2014. [39]S. Thomas, F. H. Villa-López, J. Theunis, J. Peters, M. Cole and J. W. Gardner, “Particle Sensor Using Solidly Mounted Resonators”, IEEE Sensors Journal, vol. 16, pp. 2282-2289, 2016. [40]C. J. Chung, Y. C. Chen, C. C. Cheng and C. M. Wang, “Superior dual mode resonances for 1/4 λ solidly mounted resonators”, IEEE International Frequency Control Symposium, pp. 250-253, 2008. [41]J. Xiong, X. L. Sun, P. Guo, D. Zheng and H. S. Gu, “Analysis of resonance characteristics of solidly mounted resonator for mass sensing applications”, Applied Physics A, vol. 116, pp. 1573-1577, 2014. [42]D. Chen, Y. Xu, J. Wang, L. Zhang, X. Wang and M. Liang, “The AlN based solidly mounted resonators consisted of the all-metal conductive acoustic Bragg reflectors”, Vacuum, vol. 85, pp. 302-306, 2010. [43]T. Mirea, M. Demiguel-Ramos, M. Clement, J. Olivares, E. Iborra, V. Yantchev and I. Katardjiev, “AlN solidly mounted resonators for high temperature applications”, IEEE International Ultrasonics Symposium, pp. 1524-1527, 2014. [44]J. B. Lee, H. J. Kim, S. G. Kim, C. S. Hwang and S. H. Hong, “Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator”, Thin Solid Films, vol. 435, pp. 179-185, 2003. [45]D. Chen, J. Wang, D. Li, L. Zhang and X. Wang, “The c-axis oriented AlN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation”, Applied Physics A, vol. 100, pp. 239-244, 2010. [46]M. Demiguel-Ramos, T. Mirea, M. Clement, J. Olivares, J. Sangrador and E. Iborra, “Optimized tilted c-axis AlN films for improved operation of shear mode resonators”, Thin Solid Films, vol. 590, pp. 219-223, 2015. [47]J. Wang, D. Chen, Y. Gan, X. Sun and Y. Jin, “High sensitive self-assembled monolayer modified solid mounted resonator for organophosphate vapor detection”, Applied Surface Science, vol. 257, pp. 4365-4369, 2011. [48]J. Enlund, D. Martin, V. Yantchev and L. Katardjiev, “Solidly mounted thin film electro-acoustic resonator utilizing a conductive Bragg reflector”, Sensors & Actuators A Physical, vol. 141, pp. 598-602, 2008. [49]D. Cannatà, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu and T. Lippertc, “Nerve agent simulant detection by solidly mounted resonators (SMRs) polymer coated using laser induced forward transfer (LIFT) technique”, Sensors & Actuators B Chemical, vol. 173, pp. 32-39, 2012. [50]J. Munir, T. Mirea, M. Miguel-Ramos, M. A. Saeed, A. B. Shaari and E. Iborra, “Effects of compensating the temperature coefficient of frequency with the acoustic reflector layers on the overall performance of solidly mounted resonators “, Ultrasonics, vol. 74, pp. 153-160, 2017. [51]黃鈺丞,“不同電極圖形應用於固態微型諧振器”,國立中山大學電機工程學系研究所學位論文,2016。 [52]Ultrasonic Flaw Detection Tutorial. Wave Propagation, from Olympus Scientific Solutions Americas Corps on the World Wide Web:https://www.olympus-ims.com/en/ndt-tutorials/flaw-detection/wave92propagation/ [53]G. Rughoobur, M. DeMiguel-Ramos, T. Mirea, M. Clement, J. Olivares, B. Díaz-Durán, J. Sangrador, I. Miele, W. I. Milne, E. Iborra and A. J. Flewitt, “Room temperature sputtering of inclined c-axis ZnO for shear mode solidly mounted resonators”, Applied Physics Letters, vol. 108, 2016. [54]D. Chen, W. Ren, S. Song, J. Wang, W. Liu and P. Wang, “The High Q Factor Lateral Field–Excited Thickness Shear Mode Film Bulk Acoustic Resonator Working in Liquid”, Micromachines, vol. 7, 2016. [55]吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7,1994。 [56]Accoustic Properties for Metals in Solid Form,from NDT Resource Center on the World Wide Web: https://www.nde-ed.org/GeneralResources/MaterialProperties/ ut/matlprop_metals.htm [57]H. Bardaweel, O. Hattamleh, R. Richards, D. F. Bahr, C. Richards, “A Comparison of piezoelectric materials for MEMS power generation”, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp. 207-210, 2006. [58]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO”, Superlattices and Microstructures, vol. 34, pp. 3-32, 2003. [59]Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films”, IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 769-778, 2001. [60]K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol.209, pp.522-525, 2000 [61]X. H. Li, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Materials Letters, vol. 57, pp. 4655-4659, 2003. [62]W. Walter and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Materials Letters, vol. 55, pp. 67-72, 2002. [63]D. C. Look., D. C. Reynolds., C. W. Litton and R. L. Jones, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Applied Physics Letters, vol. 81, pp. 1830-1832, 2002. [64]Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Applied Surface Science, vol. 142, pp. 233-236, 1999. [65]施敏著,張俊彥譯,“半導體元件之物理與技術”,儒林,pp. 425,1990。 [66]H. Hartnagel, A. L. Dawar, A. K. Jain, A. K and C. Jagadish, “Semiconducting transparent thin films”, Institute of Physics Pub, 1995. [67]J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134-136, 1991. [68]E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films”, Materials Science & Engineering A, vol. 140, pp. 696-701, 1991. [69]I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, “Microstructural evolution during film growth”, Journal of Vacuum Science and Technology A, vol. 21, 2003. [70]W. E. Newell, “Face-mounted piezoelectric resonators”, Proceedings of the IEEE, vol. 53, pp. 575-581, 1965. [71]K. M. Lakin, K. T. Mccarron and R. E. Rose, “Solidly mounted resonators and filters”, IEEE Ultrasonics Symposium. Proceedings. An International Symposium, vol. 2, pp. 905-908, 1995. [72]R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 292-296, 2000. [73]K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Frequency Control Symposium, pp. 876-881, 1998. [74]H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Japanese Journal of Applied Physics, vol. 39, pp. 3049-3053, 2000. [75]W. C. Shih, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, P. L. Ting and H. H. Yeh, “Simulation of solidly mounted resonator using mason model and its implementation”, Sensors and Materials, vol. 29, pp. 405-410, 2017. [76]楊畯閎,“剪模態氮化鋁薄膜體聲波共振器之液態感測研製”,國立中山大學電機工程學系研究所學位論文,2011。 [77]M. Clement, E. Iborra, J. Olivares, M. Demiguel-Ramos, T. Mirea and J. Sangrador, “On the effectiveness of lateral excitation of shear modes in AlN layered resonators”, Ultrasonics, vol. 54, pp. 1504-1508, 2014. [78]S. Gevorgian and A. Vorobiev, “ADS Based 1D Model of Solidly Mounted FBARs Including Longitudinal and Shear Waves”, Integrated Ferroelectrics, vol. 134, pp. 75-80, 2012. [79]W. A. Cady, “RCA clean replacement”, Journal of the Electrochemical Society, vol. 143, pp. 2064-2067, 1996. [80]劉彥宏,“以雙壓電層研製固態微型諧振器”,國立中山大學電機工程學系研究所學位論文,2015。 [81]R. C. Lin, Y. C. Chen and K. S. Kao, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Applied Physics A, vol. 89, pp. 475-479, 2007. [82]W. Wang, C. Zhang, Y. Liu and T. Ding, “Impedance analysis for lateral field excited acoustic wave sensors ☆”, Sensors & Actuators B Chemical, vol. 156, pp. 969-975, 2011. [83]C. J. Zhou, Y. Yang and T. L. Ren, “Finite element analysis of lateral field excited thickness shear mode film bulk acoustic resonator”, Compel - International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 31, pp. 1892-1900, 2012. [84]D. Rosén, J. Bjurström and I. Katardjiev, “Suppression of spurious lateral modes in thickness-excited FBAR resonators”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 1889-1992, 2005. [85]S. Tanifuji, Y. Aota, H. Oguma, S. Kameda and T. Takagi, “Spurious vibration suppression by film thickness control for FBAR”, IEEE Ultrasonics Symposium, vol. 219, pp. 2193-2196, 2008. [86]S. Tanifuji, Y. Aota, H. Oguma, S. Kameda and T. Takagi, “Spurious vibration suppression by film thickness control for FBAR”, IEEE Ultrasonics Symposium, vol. 219, pp. 2193-2196, 2008. [87]趙欣茹,“新型側向場激勵薄膜體聲波諧振器的研究”,浙江大學研究所學位論文,2014。 [88]S. Wu, Z. X. Lin, M. S. Lee, R. Ro, “Bulk acoustic wave analysis of crystalline plane oriented ZnO films”, Journal of Applied Physics, vol. 102, 2007.
|