(3.239.33.139) 您好!臺灣時間:2021/03/02 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅大勛
研究生(外文):Ta-Hsun Lo
論文名稱:無橋式倍壓升壓型功率因數修正器之研製
論文名稱(外文):Design and Implementation of a Bridgeless Voltage-Doubler Boost Converter for Power Factor Correction
指導教授:鄧人豪鄧人豪引用關係
指導教授(外文):Jen-Hao Teng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:102
中文關鍵詞:功率因數修正數位平均電流控制倍壓升壓型轉換器交流-直流轉換器無橋式功率因數修正器
外文關鍵詞:AC-DC ConverterBridgeless Power Factor CorrectorPower Factor CorrectionDigital Average Current ControlVoltage-Doubler Boost Converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一無橋式倍壓升壓型功率因數修正器,與傳統倍壓型交流-直流轉換器相比,本論文所提出之無橋式功率因數修正器,具有減少元件、簡化回授取樣、提升電路效率等優點。本文所提出之無橋式倍壓升壓型功率因數修正器係利用數位式平均電流控制法分別控制輸入交流電之正負半週而達到功率因數修正,並以倍壓電路接於輸出端,其輸出電壓增益為一般升壓型交流-直流轉換器的二倍,使電路能應用於高電壓場合。論文並針對各元件進行損失推導,並與實驗結果相比以確認損失推導之準確性。本文利用數位控制晶片TI TMS320F28335實現一輸入交流電壓110V,輸出直流電壓400V至700V且輸出功率600W之無橋式倍壓升壓型功率因數修正器,經實驗結果證實本論文架構之可行性,電路於不同輸出電壓,全載的功率因數與輸入電流總諧波失真皆可符合國際規範,且轉換器最高轉換效率可達95.75%。
A bridgeless voltage-doubler boost converter for power factor correction is proposed in this thesis. The proposed circuit has several advantages over the conventional voltage-doubler AC to DC converter such as reducing the component, simplifying feedback circuit, improving conversion efficiency, etc. The proposed converter uses digitalized average current control method to control the AC input voltage in positive and negative half-cycle, respectively, to achieve power factor correction. The voltage-doubler circuit is installed at the output terminal. Therefore, the voltage conversion gain of the proposed circuit is twice than the conventional boost AC to DC converter. For this reason, the proposed circuit has great potential to be used for high voltage applications. Using the power loss calculation model in this thesis can analyze each component. The conversion efficiency can be determined from the power loss calculation model and the experiment results. TI TMS320F28335 is used in this thesis and implemented the proposed converter with an AC input voltage of 110V, DC output voltages between 400V to 700V and output power of 600W. Finally, the validity of proposed converter is identified in this thesis. Experimental results confirm that the power factor and total harmonic distortion of input current of proposed converter can conform the requirements of international regulations at whole load. In addition, the maximum conversion efficiency of 95.75% can be achieved.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1研究背景 1
1-2研究動機 2
1-3論文大綱 3
第二章 功率因數修正器與倍壓電路簡介 4
2-1功率因數與諧波失真定義 4
2-2功率因數修正器操作模式與控制方法 7
2-2-1功率因數修正器操作模式簡介 7
2-2-2功率因數修正器控制方法 8
2-3功率因數修正器架構 11
2-3-1橋式功率因數修正器 11
2-3-2無橋式功率因數修正器 21
第三章 無橋式倍壓升壓型功率因數修正器 26
3-1 無橋式倍壓升壓型功率因數修正器電路動作模式分析 30
3-2 無橋式倍壓升壓型功率因數修正器損失估算 36
3-3 電路設計及周邊電路 40
3-4 程式設計流程 49
第四章 實驗結果 51
4-1實測波形 52
4-2實測結果曲線圖 67
4-3 無橋式倍壓升壓型功率因數修正器損失計算 73
第五章 結論與未來展望 86
5-1結論 86
5-2未來展望 86
參考文獻 87
[1]P. N. Enjeti, R. Martinez, “A High Performance Single Phase AC to DC Rectifier with Input Power Factor Correction,” in Proc. IEEE APEC, San Diego, CA, pp. 190-195, Mar. 1993.
[2]C. T. Pan, T. C. Chen, “Modeling and Design of An AC to DC Converter,” IEEE Transactions on Power Electronics, vol. 8, no.4, pp. 501-508, Oct. 1993.
[3]W. Jewell, D. J. Ward, “Single Phase Harmonic Limits,” in Power Quality and Safety Workshop, Wichita State University, Kansas, 2002.
[4]A. Prudenzi, U. Grasselli, “IEC Std. 61000-3-2 Harmonic Current Emission Limits in Practical Systems: Need of Considering Loading Level and Attenuation Effects,” in Proc. IEEE Power Engineering Society Summer Meeting, Vancouver, BC, pp. 277-282, Mar. 2001.
[5]P. N. Wood, “Flourescent Ballast Design Using Passive PFC and Crest Factor Control,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp.2076-2081, Oct. 1998.
[6]W. M. Lin, M. M. Hernando, A. Fernandez, J. Sebastian, P. J. Villegas, “A New Topology for Passive PFC Circuit Design to Allow AC-to-DC Converter to Comply with the New Version of IEC1000-3-2 Regulations,” in Proc. IEEE PESC, Cairns Qld, vol. 4, pp. 2050-2055, Jun. 2002.
[7]P. R. Mohanty, A. K. Panda, D. Das, “An Active PFC Boost Converter Topology for Power Factor Correction,” in Proc. IEEE INDICON, New Delhi, pp. 1-5, Dec. 2015.
[8]I. M. Safwat, W. Xiahua, “Comparative Study Between Passive PFC and Active PFC Based on Buck-Boost Conversion,” in Proc. IEEE IAEAC, Chongqing, pp. 45-50, Mar. 2017.
[9]T. Hoevenaars, K. LeDoux, and M. Colosino, “Interpreting IEEE Std 519 and Meeting its Harmonic Limits in VFD Applications,” in Proc. IEEE PCIC, Houston, TX, pp.145-150, May. 2003.
[10]L. Wang, Q. H. Wu, W. H. Tang, Z. Y. Wu, W. Ma, “CCM-DCM Average Current Control for Both Continuous and Discontinuous Conduction Modes Boost PFC Converters,” in Proc. IEEE EPEC, Saskatoon, SK, pp. 1-6, Oct. 2017.
[11]C. P. Ku, D. Chen, S. H. Lin, “A New Control Scheme for Boost PFC Converters for Both CCM and DCM Operations,” in Proc. IEEE ECCE, Phoenix, AZ, pp. 1334-1338, Sept. 2011.
[12]Q. Ji, X. Ruan, L. Xie, Z. Ye, “Conducted EMI Spectra of Average-Current-Controlled Boost PFC Converters Operating in Both CCM and DCM,” IEEE Transactions on Industrial Electronics, vol. 62, no.4, pp. 2184-2194, Apr. 2015.
[13]T. Grote, H. Figge, N. Frohleke, J. Bocker, F. Schafmeister, “Digital Control Strategy for Multi-Phase Interleaved Boundary Mode and DCM Boost PFC Converters,” in Proc. IEEE ECCE, Phoenix, AZ, pp. 3186-3192, Sep. 2011.
[14]S. P. Yang, S. J. Chen, C. M. Huang, “Small-Signal Modeling and Controller Design of BCM Boost PFC Converters,” in Proc. IEEE ICIEA, pp. 1096–1101, Jul. 2012.
[15]H. J. Kim, G. S. Seo, B. H. Cho, H. Choi, “A Simple Average Current Control with On-Time Doubler for Multiphase CCM PFC Converter,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1683—1693, Mar. 2015.
[16]X. Du, L. Zhou, H. M. Tai, “Average Current Control of a Series-Type Single-Phase PFC with Hybrid Modulation,” IEEE Transactions on Power Electronics, vol. 26, no.9, pp. 2381–2385, Sep. 2011.
[17]J. W. Shin, B. H. Cho, “Digitally Implemented Average Current-Mode Control in Discontinuous Conduction Mode PFC Rectifier,” IEEE Transactions on Power Electronics, vol. 27, no.7, pp. 3363–3373, Jul. 2012.
[18]W. Cheng, J. Song, H. Li, Y. Guo, “Time-Varying Compensation for Peak Current-Controlled PFC Boost Converter,” IEEE Transactions on Power Electronics, vol. 30, no.6, pp. 3431–3437, Jun. 2015.
[19]A. S. Lock, E. R. da. Silva, “Improved Hysteresis Current Control of a Single Phase, Three Level, Double PFC Converter,” in Proc. IEEE PESC, Oriando, FL, pp. 1326–1330, Jun. 2007.
[20]A. T. S. Subramanian, P. Sabarish, A. N. Ali, “A Power Factor Correction Based Canonical Switching Cell Converter for VSI Fed BLDC Motor By Using Voltage Follower Technique,” in Proc. IEEE ICEICE, Karur, India, pp. 1–8, Apr. 2017.
[21]吳佳玲,“雙向可變結構之DC-DC轉換器”,國立中山大學電機工程研究所,中華民國106年8月。
[22]L. Balogh, R. Redl, “Power Factor Correction with Interleaved Boost Converters in Continuous Inductor Current Mode,” in Proc. IEEE APEC, San Diego, CA, pp. 168-174, Mar. 1993.
[23]B. A. Miwa, D. M. Otten, M. F. Schlecht, “High Efficiency Power Factor Correction Using Interleaving Techniques,” in Proc. IEEE APEC, MA, pp. 557–568, Feb. 1992.
[24]黃柏嘉,“用於功率因數修正之交錯式倍壓升壓型轉換器之研製”,國立中山大學電機工程研究所,中華民國105年8月。
[25]M. Mahdavi, H. Torkkhah, “A New High Efficiency High Power Factor ZVT Bridgeless PFC Converter,” in Proc. IEEE AE, Pilsen, Czech Republic, pp. 161-164, Sep 2016.
[26]A. M. Pastor, E. V. Idiarte, A. C. Pastor, L. M. Salamero, “Loss-Free Resistor-Based Power Factor Correction Using a Semi-Bridgeless Boost Rectifier in Sliding -Mode Control,” IEEE Transactions on Power Electronics, vol. 30, no.10, pp. 5842–5853, Oct. 2015.
[27]“A High-Efficiency, 300W Bridgeless PFC Stage,” On Semiconductor, Available at: http://onsemi.com
[28]F. Musavi, D. Gautam, W. Eberle, W. G. Dunford, "A Simplified Power Loss Calculation Method for PFC Boost Topologies," in Proc. IEEE ITEC, Detroit, MI, pp. 1-5, Jun. 2013.
[29]R. Severns, “Design of Snubbers for Power Circuit,” Available at:
http://www.cde.com/resources/technical-papers/design.pdf
[30]P. C. Todd, “Snubber Circuits: Theory, Design and Application,” Available at:
http://www.ee.bgu.ac.il/~dcdc/notes/Additional_2012/Snubbers.pdf
[31]“Correct Snubber Power Loss Estimate Saves the Day,” Available at:
https://www.maximintegrated.com/content/dam/files/design/technical-documents/design-solutions/DS32-Correct-Snubber-Power-Loss-Estimate-Saves-the-Day.pdf
[32]A. R. Sam, F. Stuckler, S. Ken, “PFC Boost Converter Design Guide,” Infineon, Feb. 2016.
[33]Y. Jang, M. M. Jovanovic, D. L. Dillman, “Hold-Up Time Extension Circuit with Integrated Magnetic,” IEEE Transactions on Power Electronics, vol. 21, no.2, pp. 394–400, Mar. 2006.
[34]A. R. Sam, “CCM PFC Boost Converter Design,” Infineon, Jan. 2013.
[35]許育彰,“基於DSP控制之無橋電流饋入全橋式功率因數修正器研製”,國立台灣科技大學電子工程研究所,中華民國101年7月。
[36]朱自恆、林慶仁,“切換式電源供應器的EMI濾波器設計方法”,新電子科技雜誌187期,中華民國100年10月。
[37]P. Kong, S. Wang, F. C. Lee, "Common Mode EMI Noise Suppression for Bridgeless PFC Converters," IEEE Transactions on Power Electronics, vol. 23, no,1, pp, 291-297, Jan. 2008.
[38]符曉、朱洪順,“TMS320F2833X DSP應用開發與實踐”,北京航空航天大學出版社。
電子全文 電子全文(網際網路公開日期:20230721)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔