(3.235.108.188) 您好!臺灣時間:2021/03/07 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐暉舜
研究生(外文):Hui-shun Hsu
論文名稱:多晶矽穿隧式薄膜電晶體之局部偏壓不穩定性研究
論文名稱(外文):A Study of the Local Bias Stress Instability of the Polycrystalline-Silicon Tunnel Thin-Film Transistor
指導教授:馬誠佑
指導教授(外文):Cheng-Yu Ma
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:可靠度穿隧式薄膜電晶體薄膜電晶體熱載子應力負偏壓應力正偏壓應力
外文關鍵詞:Hot Carrier StressNegative Bias StressThin-Film TransistorTunnel Thin-Film TransistorRelativelyPositive Bias Stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於穿隧式薄膜電晶體具有特殊的傳導機制,相較於傳統薄膜電晶體展現出較佳的短通道效應抑制力,因此被廣泛的研究,然而根據目前的文獻,大多數主要是探討如何改善多晶矽穿隧式薄膜電晶體的性能,例如應用不同的結晶法、摻雜活化法、電漿鈍化缺陷…等等,比較少有關於多晶矽穿隧式薄膜電晶體的可靠度研究。
在本論文中,我們透過各個端點施加偏壓應力,發現對傳統薄膜電晶體和穿隧式薄膜電晶體來說,負偏壓應力(NBS)相較於正偏壓應力(PBS)對元件電性的劣化程度皆較為嚴重,這是由於在NBS下產生較多的晶粒邊界陷阱能態(NGB)與界面陷阱能態(Nit),因此導致元件電性的劣化較為嚴重。
而我們進一步研究發現穿隧式薄膜電晶體在PBS和NBS下的劣化是由源極端的損傷所致,推測是因為穿隧式薄膜電晶體的傳導機制是由源極端穿隧主導,因此汲極端的陷阱產生對電性的影響並不顯著,而源極端的陷阱產生強烈影響元件電性。
在熱載子應力(HCS)量測中,穿隧式薄膜電晶體與傳統薄膜電晶體展現出不同的行為,由於汲極端的損傷對穿隧式薄膜電晶體的電性影響並不顯著,而VD的增加同時提高了通道的電位,使得源極端的垂直電場減弱,減少了源極端的損傷,導致穿隧式薄膜電晶體在相同VG偏壓應力下,隨著VD的增加,元件的劣化程度減緩。
Tunneling thin-film transistor exhibits better short channel effect (SCE) immunity than conventional thin-film transistor due to its special carrier transport mechanism: interband tunneling. According to the current literature, most of them mainly discuss how to improve the performance of poly-silicon tunneling thin-film transistors, such as the application of different crystallization methods, dopant activation methods, plasma passivation defects, etc. However, the reliability of poly-silicon tunneling thin-film transistors is rarely studied.
In this thesis, we apply bias stress through gate, drain, and source, respectively. It is found that for conventional thin-film transistors and tunneling thin-film transistors, the negative bias stress (NBS) is more serious than the positive bias stress (PBS) on the degradation of the devices. Because more grain boundary trap energy states (NGB) and interface trap energy states (Nit) are generated under NBS, the electrical performance degradation of devices is more serious.
Further more, research has found that the degradation of tunneling thin-film transistors under PBS and NBS is caused by the damage of the area near the source, because the conduction mechanism of tunneling thin-film transistors is dominated by source tunneling. Therefore, the damage of the area near the drain has no significant effect on the electrical properties of the devices, while the damage of the area near the source strongly affects the electrical properties of the devices.
In the hot carrier stress (HCS) measurement, the tunneling thin-film transistor exhibits different behavior from the conventional thin-film transistor. Under the same gate stress bias, the degradation of the device is slowed down with the increasing drain stress bias. This is because the damage of the area near the drain has no significant effect on the electrical properties of the tunneling thin-film transistor, and the higher drain stress bias increases the potential barrier of the channel, which weakens the vertical electric field at the area near the source and reduces the damage of the area near the source.
論文審定書 ................................ ................................ ................................ ....................... i
論文公開授權書 ................................ ................................ ................................ .............. ii
誌謝 ................................ ................................ ................................ ................................ . iii
摘要 ................................ ................................ ................................ ................................ . iv
Abstract ................................ ................................ ................................ ............................. v
目錄 ................................ ................................ ................................ ................................ . vi
圖目錄 ................................ ................................ ................................ ........................... viii
表目錄 ................................ ................................ ................................ ............................. xi
第 1章 緒論 ................................ ................................ ................................ .................... 1
1.1 前言 ................................ ................................ ................................ .................. 1
1.2 多晶矽薄膜電體 (Poly-Si Thin-Film Transistor, TFT) ................................ 1
1.3 短通道效應 (Short Channel Effect, SCE) ................................ ........................ 2
1.3.1 汲極導致能障降低(Drain-Induced Barrier Lowering, DIBL) .................... 2
1.3.2 擊穿崩潰 (Punch Through) ................................ ................................ ........... 3
1.4 穿隧式場效電晶體(Tunneling Field-Effect Transistor, TFET) ...................... 3
1.5 穿隧式場效電晶體載子傳輸機制 ................................ ................................ .. 4
1.5.1 產生與複合電流 (Generation and Recombination Current) ........................ 4
1.5.2 陷阱輔助穿隧(Trap-Assisted Tunneling, TAT) ................................ .......... 4
1.5.3 能帶間穿隧(Band-to-Band Tunneling, BTBT) ................................ ........... 5
1.6 薄膜電晶體之可靠度機制 ................................ ................................ .............. 5
1.6.1 正偏壓應力(Positive Bias Stress, PBS) ................................ ....................... 5
1.6.2 負偏壓應力(Negative Bias Stress, NBS) ................................ ..................... 6
1.6.3 熱載子應力(Hot Carrier Stress, HCS) ................................ ......................... 6
1.7 實驗動機 ................................ ................................ ................................ .......... 6
第 2章 實驗步驟與流程 ................................ ................................ .............................. 14
2.1 元件製作 ................................ ................................ ................................ ........ 14
2.2 元件電性參數萃取 ................................ ................................ ........................ 15
2.2.1 臨界電壓(Threshold Voltage, Vth) ................................ ............................. 15
2.2.2 次臨界擺幅(Subthreshold Swing, S.S.) ................................ ..................... 15
2.2.3 開啟電流(On-State Current, Ion) ................................ ................................ 16
2.2.4 關閉電流(Off-state Current, Ioff) ................................ ................................ 16
2.2.5 界面陷阱能態(Interface Trap State, Nit) ................................ ................... 16
2.2.6 晶粒邊界陷阱能態(Grain Boundary Trap State, NGB) ............................. 16
第 3章 結果與討論 ................................ ................................ ................................ ...... 23
3.1 可靠度量測條件 ................................ ................................ ............................ 23
3.2 參數萃取 ................................ ................................ ................................ ........ 23
3.3 傳統薄膜電晶體與穿隧式薄膜電晶體之PBS與NBS .............................. 24
3.4 穿隧式薄膜電晶體之VD Stress ................................ ................................ .... 24
3.5 穿隧式薄膜電晶體之VS Stress ................................ ................................ .... 25
3.6 傳統薄膜電晶體與穿隧式薄膜電晶體之HCS ................................ ........... 26
第 4章 結論與未來展望 ................................ ................................ .............................. 45
參考文獻 ................................ ................................ ................................ ........................ 46
[1]A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, no. 7373, pp. 329-337, 2011.
[2]W. C.-Y. Ma and Y.-H. Chen, "Performance improvement of poly-Si tunnel FETs by trap density reduction," IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 864-868, 2016.
[3]C. H. Fa and T. T. Jew, "The poly-silicon insulated-gate field-effect transistor," IEEE Transactions on Electron Devices, vol. ED-13, no. 2, pp. 290-291, 1966.
[4]S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, and P. K. T. Mok, "Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass," IEEE Transactions on Electron Devices, pp. 569-575, 2000.
[5]T. J. King, “Trends in polycrystalline-silicon thin-film transistor technologies for AMLCDs,” AMLCDs ''95, pp. 80-86, 1995.
[6]K. Oh, S. Yang, J. Lee, K. Park, and M. Y. Sung, "Poly-Si TFTs with bottom-gate structure using excimer laser crystallization for AMOLED displays," Electronics Letters, vol. 51, no. 24, pp. 2030-2032, 2015.
[7]F. Hayashi and M. Kitakata, "A high performance polysilicon TFT using RTA and plasma hydrogenation applicable to highly stable SRAMs of 16 Mbit and beyond," in 1992 Symposium on VLSI Technology Digest of Technical Papers, 1992, pp. 36-37.
[8]T. Bing-Yue, L. Chia-Pin, H. Chih-Feng, and X. Yi-Hsuan, "0.1/spl mu/m poly-Si thin film transistors for system-on-panel (SoP) applications," in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest., 2005, pp. 911-914.
[9]O. V. Naumova et al., "SOI nanowires as sensors for charge detection," Semiconductor Science and Technology, vol. 25, no. 5, p. 055004, 2010.
[10]I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, "Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation," IEEE Electron Device Letters, vol. 12, no. 4, pp. 181-183, 1991.
[11]D.-R. Hsieh, J.-Y. Lin, P.-Y. Kuo, and T.-S. Chao, "High-performance pi-gate poly-Si junctionless and inversion mode FET," IEEE Transactions on Electron Devices, vol. 63, no. 11, pp. 4179-4184, 2016.
[12]B. Madeleine, D. Nicole, G. Mohamed, H. Lazhar, L. Bertrand, and R. Patrick, "Poly-Si thin film transistors fabricated with rapid thermal annealed silicon films," Japanese Journal of Applied Physics, vol. 30, no. 11B, p. L1924, 1991.
[13]W.-H. Huang et al., "Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes," Applied Physics Letters, vol. 108, no. 24, p. 243502, 2016.
[14]C. P. Chang and Y. S. Wu, "Improved electrical performance and uniformity of MILC poly-Si TFTs manufactured using drive-in nickel-induced lateral crystallization," IEEE Electron Device Letters, vol. 30, no. 11, pp. 1176-1178, 2009.
[15]E. Ibok and S. Garg, "A characterization of the effect of deposition temperature on polysilicon properties morphology, dopability, etchability, and polycide properties," Journal of the Electrochemical Society, vol. 140, no. 10, pp. 2927-2937, 1993.
[16]Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices 2nd Edition. Cambridge University Press, 2009.
[17]Yao-Sheng Huang, "Comparison of positive bias temperature instability between thin-film transistors and tunnel transistors with poly-Si channel film," Department of Electrical Engineering National Sun Yat-sen University Master Thesis.
[18]A. C. Seabaugh and Z. Qin, "Low-voltage tunnel transistors for beyond CMOS logic," Proceedings of the IEEE, vol. 98, pp. 2095-2110, 2010.
[19]A. Vandooren, A. M. Walke, A. S. Verhulst, R. Rooyackers, N. Collaert, and A. V. Y. Thean, "Investigation of the subthreshold swing in vertical tunnel-FETs using H2 and D2 Anneals," IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 359-364, 2014.
[20]D. A. Neamen, Semiconductor Physics and Devices, 2012, McGraw-Hill.
[21]Y.-R. Jhan et al., "Low-temperature microwave annealing for tunnel field-effect transistor," IEEE Electron Device Letters, vol. 36, no. 2, pp. 105-107, 2015.
[22]Chih-Yang Chen, Student Member, IEEE, Jam-Wem Lee, Shen-De Wang, Ming-Shan Shieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Member, IEEE, Kuan-Lin Yeh, and Tan-Fu Lei, Member, IEEE, “Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, VOL. 53, NO. 12, Dec. 2006.
[23]William Cheng-Yu Ma, “ Impacts of trap-state generation on tunnel thin-film transistor ,” IEEE Trans. Electron Devices, VOL. 65, NO. 4, Apr. 2018.
電子全文 電子全文(網際網路公開日期:20230815)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔