(44.192.112.123) 您好!臺灣時間:2021/03/09 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周俊廷
研究生(外文):Jun-Ting Zhou
論文名稱:以奈米壓印技術於LiNbO3基板上製作高頻表面聲波濾波器
論文名稱(外文):Fabrication of high frequency SAW filter on LiNbO3 substrate using the nano-imprinting lithography technology
指導教授:陳英忠
指導教授(外文):Chen, Ying-Chung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:100
中文關鍵詞:電子束微影技術指叉式電極奈米壓印微影技術表面聲波元件壓電鈮酸鋰基板
外文關鍵詞:Surface acoustic waveLiNbO3 substrateInterdigital transducersPiezoelectricityE-beam lithography technologyNano-imprinting lithography technology
相關次數:
  • 被引用被引用:2
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用奈米壓印微影技術研製高頻表面聲波濾波器,以代替現今學界與業界常用之紫外光微影技術與電子束微影技術,所設計之頻段適用於4G LTE通訊及GPS系統。實驗中所採用之表面聲波元件結構係於壓電基板LiNbO3上製作指叉式電極,所設計之指叉式電極線寬為650 nm、延遲線長度為16λ、對數為20對,電極材料採用導電性佳、質量密度低及成本低廉之鋁金屬。考量製程良率、成本、實驗時間及鋁電極薄膜之品質等製程因素,將選用負光罩圖層搭配舉離鋁製程來製作元件。
硬模製備部分係選用矽基板,利用電子束微影及感應耦合式電漿蝕刻技術製作,其中,所使用之電子束微影電流為500 pA,dose量為2.7 μs,ICP蝕刻所使用之RF功率為500W,直流偏壓200W,來完成硬模之製作。壓印製程部份係使用PMMA A6作為高分子轉介層,使用之壓力為4.5 MPa,溫度為180°C,時間為5分鐘,以RIE蝕刻PMMA犧牲層,最後蒸鍍鋁金屬並舉離作為電極,完成元件之製作。所完成之元件中心頻率為1.46 GHz,插入損失為-28.6 dB,3dB頻寬達100 MHz,具有大頻寬,高頻化之元件特性。
In this study, nano-imprinting lithography (NIL) technology is applied to fabricate the high frequency surface acoustic wave (SAW) filter. Compare with UV lithography and e-beam lithography, NIL has some advantages, including low cost, fast fabrication and so on. The designed interdigital transducers (IDT) patterns are the width of 650 nm, the delay-line length of 16λ and the number of IDT of 20 pairs. The structure of a SAW device consists of the metallic (aluminum) IDT layer on top of the LiNbO3 substrate are fabricated with negative photomask design and lift-off process.
Moreover, e-beam lithography and inductively coupled plasma technology are used to fabricate a hard mold by beam current of 500 pA, dose time of 2.7 μs in EBW process, and RF power of 500 W, DC bias of 200 W in ICP process. The nano-imprinting lithography process was performed to transfer IDT patterns onto LiNbO3 substrate at temperature of 180°C and pressure of 4.5 MPa. After imprinting, PMMA scarification layer is etched by reactive ion etching technology. Finally, aluminum IDT pattern is deposited onto LiNbO3 substrate and lift-off. The obtained frequency response of SAW filter is center of frequency of 1.46 GHz, insertion loss of -28.6 dB and 3dB bandwidth of 100 MHz.
中文審定書 i
英文審定書 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究背景與動機 1
1.2 表面聲波元件參考文獻回顧 3
1.3 奈米壓印微影技術簡介 5
1.3.1 熱壓奈米壓印微影技術 5
1.3.2 紫外光奈米壓印微影技術 6
1.3.3 軟微影技術 7
1.3.4 步進式快閃奈米壓印微影技術 8
1.3.5 雷射輔助奈米壓印微影技術 9
1.4 研究內容 11
第二章 理論分析 12
2.1 壓電效應 12
2.2 表面聲波濾波器原理 15
2.2.1 表面聲波濾波器基礎設計與特性 16
2.2.2 表面聲波濾波器參數性質 19
2.2.3 表面聲波元件種類 21
2.3 電子束微影製程技術 23
2.4 奈米壓印微影製程技術 24
2.5 乾式蝕刻技術 27
2.6 聚甲基丙烯酸甲酯結構與特性 30
2.7 鈮酸鋰結構與特性 32
2.8 全氟辛烷基三氯矽烷結構與特性 33
第三章 實驗 34
3.1 實驗流程 34
3.2 基板清潔 35
3.3 硬模製作 36
3.3.1 IDT電極結構設計 36
3.4 聲波元件製備 41
3.4.1 脫模劑/矽硬模製備 41
3.4.2 矽硬模清潔 42
3.5 實驗製程儀器 44
3.5.1 電子束微影系統(Electron beam lithography system, EBL) 44
3.5.2 感應式耦合電漿系統(Inductively coupled plasma system, ICP) 45
3.5.3 奈米壓印機 46
3.5.4 反應式離子蝕刻系統(Reactive ion etching system, RIE) 47
3.5.5 熱蒸鍍系統 48
3.5.6 橢圓偏光儀(Ellipsometer) 48
3.5.7 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 49
3.5.8 原子力顯微鏡(Atomic Force Microscopy, AFM) 50
3.5.9 網路分析儀(Network analyzer) 51
第四章 結果與討論 52
4.1 矽硬模製備 52
4.1.1 指叉式電極結構設計 52
4.1.2 電子束微影製程 57
4.1.3 感應耦合式電漿製程 63
4.2 SAW元件製備 66
4.2.1 PMMA厚度檢測 66
4.2.2 沉積脫模劑於硬模 67
4.2.3 熱壓奈米壓印參數分析 68
4.2.4 蝕刻PMMA犧牲層參數分析 73
4.2.5 指叉式電極之製作 78
4.2.6 SAW元件之頻率響應分析 80
第五章 結論 82
參考文獻 84
1.Fraden, J., Handbook of modern sensors: physics, designs, and applications. Springer Science & Business Media, 2004.
2.Lewis, M. F., Rayleigh waves-a progress report. European Journal of Physics, vol.16, pp. 1, 1995.
3.Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, vol.1. pp. 4-11, 1885.
4.范秉舜, 利用 Fluoropolyol薄膜與表面聲波元件之氣體辨識研究. 中原大學電子工程研究所學位論文, 2007.
5.Gardner, J.W., V.K. Varadan, Microsensors, MEMS and smart devices. John Wiley & Sons, Inc. 2001.
6.White, R., F. Voltmer, Direct piezoelectric coupling to surface elastic waves. Applied physics letters, vol.7, pp. 314-316, 1965.
7.沈靜怡, Sezawa 模態表面聲波共振器應用於人類免疫球蛋白 E 感測器之硏究. 國立中山大學電機工程研究所碩士論文, 2012.
8.Chou, S. Y., Krauss, P. R., Renstrom, P. J., Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.14, pp. 4129-4133, 1996.
9.Nielsen, T., Nanoimprint lithography. Master’s project, Technical University of Denmark, MIC–Institute for Micro-and Nanotechnology, 2003.
10.Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L., Zhuang, L., Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.15, pp. 2897-2904, 1997.
11.Otto, M., Bender, M., Hadam, B., Spangenberg, B., Kurz, H., Characterization and application of a UV-based imprint technique. Microelectronic engineering, vol.57, pp. 361-366, 2001.
12.Zhao, X. M., Xia, Y., Whitesides, G. M., Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, vol.7, pp. 1069-1074, 1997.
13.Lipomi, D. J., Martinez, R. V., Cademartiri, L., Whitesides, G. M., 7.11: soft lithographic approaches to nanofabrication. Polym. Sci. Compr, vol.10, pp. 211-231, 2012.
14.Colburn, M., Johnson, S. C., Stewart, M. D., Damle, S., Bailey, T. C., Choi, B., Willson, C. G., Step and flash imprint lithography: a new approach to high-resolution patterning. Emerging Lithographic Technologies III. vol.3676, pp. 379-389, 1999.
15.Ruchhoeft, P., Colburn, M., Choi, B., Nounu, H., Johnson, S., Bailey, T., Wolfe, J. C., Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.17, pp. 2965-2969, 1999.
16.Scheerlinck, S., Van Thourhout, D., Baets, R., Nano imprint lithography for photonic structure patterning. in Proceedings Symposium IEEE/LEOS Benelux Chapter, 2005.
17.Chou, S. Y., Keimel, C., Gu, J., Ultrafast and direct imprint of nanostructures in silicon. Nature, vol.417, pp. 835, 2002.
18.Curie, J., Curie, P., Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, vol.3, pp. 90, 1880.
19.Liao, P. C., Design and fabrication of 4G SAW device with AlN/Si3N4/Si Structure. 2013.
20.吳朗, 電子陶瓷-壓電陶瓷, 全欣資訊圖書, 1994.
21.Surface acoustic wave (SAW) sensors. Available from: https://wiki.metropolia.fi/display/sensor/Surface+acoustic+wave+(SAW)+sensors#Surfaceacousticwave(SAW)sensors-Interdigitaltransducers(IDTs), 2014.
22.Campbell, C., Surface acoustic wave devices for mobile and wireless communications. 1998.
23.Su, Q. X., Kirby, P., Komuro, E., Imura, M., Zhang, Q., & Whatmore, R., Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. IEEE Transactions on Microwave Theory and Techniques, vol.49, pp. 769-778, 2001.
24.Atar, O., Graphene-Propagating Wave Interaction by means of Surface Acoustic Waves (SAW) Devices, 2013.
25.Ro, R., Chang, S. Y., Hwang, R. C., Lee, D. H., Identification of ionic solutions using a SAW liquid sensor. The National Science Council, Republic of China, Part A: Physical Science and Engineering, vol.23, 1999.
26.Campbell, C., Surface acoustic wave devices and their signal processing applications. Elsevier, 2012.
27.Gardner, J. W., Varadan, V. K., Awadelkarim, O. O., Microsensors. Microsensors, MEMS, and Smart Devices, pp. 227-302, 2001.
28.盧建彰, 應用微帶線結構於表面聲波濾波器之研究. 成功大學微電子工程研究所學位論文, 2003.
29.簡俊謙, 高曜煌, 表面聲波元件之設計及其在寬頻振盪器之應用. 1999.
30.蕭价伶, 非接觸式光學檢測應用於 FPW 元件量測技術; Non-contact optical method for flexural plate wave devices measurement application. 國立中央大學光電科學研究所碩士論文, 2005.
31.李其源, 濕蝕刻晶片厚度即時監控之新穎方法. 臺灣大學機械工程學研究所學位論文, 2004.
32.蔡世鴻, 湯譯增, 洪茂峰, 王永和, 表面聲波濾波器的設計準則. 材料科學與工程, vol.34, pp. 231-238, 2002.
33.廖珮淳, 以 AlN/Si3N4/Si 結構製作第四代通訊用表面聲波元件. 國立中山大學電機工程研究所碩士論文, 2013.
34.劉金勳, 接觸轉印與遮罩植入式微影技術製作超高頻表面聲波元件. 成功大學機械工程學系學位論文, 2007
35.Laker, K. R., Surface wave filters: design, construction and use, vol.67, pp. 1086 -1087, 1979.
36.高國陞, 表面聲波元件之頻率及溫度特性之研究. 國立中山大學電機工程學系博士班學位論文, 2004.
37.Vieu, C., Carcenac, F., Pepin, A., Chen, Y., Mejias, M., Lebib, A., Launois, H., Electron beam lithography: resolution limits and applications. Applied surface science, vol.164, pp. 111-117, 2000.
38.Broers, A. N., Hoole, A. C. F., Ryan, J. M., Electron beam lithography—Resolution limits. Microelectronic Engineering, vol.32, pp. 131-142, 1996.
39.陳俊淇, 謝健, 林俊宏, 電子束/聚焦離子束雙束系統應用介紹. 國家奈米元件實驗室奈米通訊, vol.15, pp. 10-14, 2008.
40.Berčič, B., Introduction to Electron Beam Lithography. vol.43, 2006.
41.D''Amour, J. N., Okoroanyanwu, U., Frank, C. W., Influence of substrate chemistry on the properties of ultrathin polymer films. Microelectronic engineering, vol.73, pp. 209-217, 2004.
42.Dutcher, J. R., Roth, C. B., Roth, Mobility on Different Length Scales in Thin Polymer Films, in Soft Materials. CRC Press, pp. 13-50, 2004.
43.Schift, H., Kristensen, A., Nanoimprint lithography–patterning of resists using molding, in Springer Handbook of Nanotechnology., pp. 271-312, 2010.
44.McAuley, S. A., Ashraf, H., Atabo, L., Chambers, A., Hall, S., Hopkins, J., Nicholls, G., Silicon micromachining using a high-density plasma source. Journal of physics d: applied physics, vol.34, pp. 2769, 2001.
45.Laermer, F., Schilp, A., Method of anisotropically etching silicon., Google Patents, 1996.
46.Lockwood, D. J., Nanostructure science and technology. 2005, Springer.
47.Matthias, B., Remeika, J., Ferroelectricity in the ilmenite structure. Physical Review, vol.76, pp. 1886, 1949.
48.Slobodnik, A. J., Conway, E. D., Delmonico, R. T., Microwave Acoustics Handbook 1A. Air Force Cambridge Research Laboratories, Hanscom, 1973.
49.Campbell, J. J., Jones, W. R., A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves. IEEE Transactions on Sonics and Ultrasonics, vol.15, pp. 209-217, 1968.
50.Ciplys, D., Rimeika, R., Measurements of electromechanical coupling coefficient for surface acoustic waves in proton-exchanged lithium niobate. Ultragarsas" Ultrasound", vol.33, pp. 14-20, 1999.
51.Kern, W., The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, vol.137, pp. 1887-1892, 1990.
52.陳奕凡, 石英玻璃模仁於奈米壓印之研究. 國立中山大學機電與機械工程研究所碩士論文, 2008.
53.Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., Keinan, E., Decomposition of triacetone triperoxide is an entropic explosion. Journal of the American Chemical Society, vol.127, pp. 1146-1159, 2005.
電子全文 電子全文(網際網路公開日期:20230828)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔