[1]Dhar V. Data science and prediction. Communication of the ACM. 2013;56 (12):64-73.
[2]Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014;26(1):97-107.
[3]Fayyad UM, Wierse A, Grinstein GG. Information visualization in data mining and knowledge discovery. 2002.
[4]Pal SK, Mitra P. Pattern recognition algorithms for data mining. 2004.
[5]泛科技:大數據(Big Data)是什麼?
2016. URL: https://panx.asia/archives/43136
[6]Diebold FX. A personal perspective on the origin(s) and development of 「Big Data」: the phenomena, the term and the discipline.
[7]INSIDE:7個你不可不知的大數據定義。
2015. URL: https://www.inside.com.tw/2015/02/13/big-data-2-7-definitions-you-should-know-about
[8]Bello-Orgaz G, Jung JJ,Camacho D. Social big data: recent achievements and new challenges. 2016;28:45-59.
[9]Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH. Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, 2011.
[10]Joachims T. Optimizing search engines using clickthrough data. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining(KDD), 2002.
[11]Lam L, Suen CY, Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Systems Man Cybernet. 1997;27(5):553-568.
[12]Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning. 1999;36:105-139.
[13]Agarwal R, Gotman, J. Computer-Assisted sleep staging. IEEE Transactions on Biomedical Engineering. 2001;48:1412-1423.
[14]蔡東遠,2010,使用不同組合的腦電圖、眼動圖及肌電圖訊號自動分類清醒期及淺睡期,碩士論文,國立中山大學機械與機電工程學系。[15]The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification.
[16]陳世昌,2010,使用不同組合的腦電圖、眼動圖及肌電圖訊號自動偵測慢波睡眠,碩士論文,國立中山大學機械與機電工程學系。[17]李宜容,2010,使用不同組合的腦電圖、眼動圖及肌動圖訊號自動偵測快速動眼睡眠期,碩士論文,國立中山大學機械與機電工程學系。[18]Kuncheva L, Whitaker C, Shipp C, Duin R. Limits on the majority vote accuracy in classifier fusion. Pattern Analysis and Applications. 2000.
[19]Demirekler M, Altıncay H. Plurality voting based multiple classifier systems: Statistically independent with respect to dependent classifier sets. Pattern Recogn. 2002;35(11):2365-2379.
[20]Ruta D, Gabrys B. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Analysis and Applications 2002;5 (4):333-350.
[21]Littlestone N, Warmuth MK. The weighted majority algorithm. Information and Computation. 1994;108:212-261.