(100.26.179.251) 您好!臺灣時間:2021/04/15 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張哲愷
研究生(外文):Che-Kai Chang
論文名稱:含裂縫之鈦/碳纖維/聚醚醚酮混合複材積層板之機械行為與疲勞性能
論文名稱(外文):Mechanical Behavior and Fatigue Responses of Cracked Ti/Carbon-fiber/PEEK Hybrid Composite Laminates
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:142
中文關鍵詞:碳纖維/聚醚醚酮裂縫纖維金屬積層板疲勞壽命機械性能
外文關鍵詞:TitaniumMechanical PropertiesAPC-2CrackFiber metal laminateFatigue Life
相關次數:
  • 被引用被引用:1
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨在於研製鈦/碳纖維/聚醚醚酮(Ti/APC-2)三明治結構創新奈米複合材料積層板。首先,使用鉻酸陽極處理法對一級鈦薄板進行表面處理,克服了常見的脫層問題,使鈦薄板與基材聚醚醚酮完美結合。接著藉由靜態拉伸試驗和疲勞試驗研究其機械性能和疲勞性能。試片的疊序有兩種,分別為十字疊 [Ti/(0/90)s/Ti]s和類似均向疊 [Ti/(0/±45/90)/Ti]s,幾何尺寸分為3層試片之為長×寬×厚 = 240×25.4×1.55 mm3和5層試片長×寬×厚 = 240×25.4×2.6 mm3兩種。試片分為無裂縫之平板試片、單邊裂縫試片、傾斜單邊裂縫試片和傾斜雙邊裂縫試片。單邊裂縫試片的初始裂縫長ai有四種,分別為1.5、3.0、4.5和6.0公厘。傾斜單邊裂縫試片有三種初始裂縫長ai = 1.5、3.0和6.0公厘與三個傾角分別為45°,60°和75°。而傾斜雙邊裂縫裂試片之初始裂縫長固定為1.5公厘,雙邊裂縫之傾角分為對稱傾角與反對稱傾角,角度分別為α = 0°,30°,45°,60°和75°,β = 0°,± 30°,±45°,±60°和±75°。
從靜態拉伸試驗中我們獲致了各種試片的極限強度、殘留強度和勁度等機械性能,並繪製平板試片之應力 - 應變曲線圖和含裂縫試片之負載 - 位移曲線圖,接著藉由疲勞試驗獲致了平板試片之應力 – 振次曲線及含裂縫試片之負載 – 振次曲線和殘留壽命。
再來,透過修正混合理論(ROMs)來預測平板試片之極限強度、縱向勁度和轉折點,預測結果與實驗數據非常一致。在預測壽命方面,所使用的結合破壞機制之理論模型,預測平板試片之耐久度/壽命,其結果與實驗數據接近。
對於單邊裂縫試片,結果顯示隨著裂縫長的增加其性能跟著降低,藉由實驗結果我們也獲致了試片之破壞韌性和J積分值。最後使用修改的方法取代了常用於金屬的巴黎氏法則,來預測含裂縫之混合積層板裂縫之生長速率和殘留壽命。
而傾斜單邊裂縫試片,我們結合了裂縫長和傾角與破壞力學來修改巴黎氏法則完成預測,但預測結果顯然不佳,加以考慮失效之機制,並將裂縫生長和殘留壽命與其做結合後,所提出之模型其壽命預測結果與實驗數據相比結果是可接受的。
雙邊裂縫試片方面,試片裂縫傾角越小(即α = β= 0°),其機械性能越低。使用修正巴黎氏法則結合裂縫長、裂縫尖端間距與傾角來預測殘留壽命,所得之預測結果與實驗數據相比,其誤差也在可接受範圍內。
在進行了一系列鈦/碳纖維/聚醚醚酮纖維金屬積層板之拉伸和疲勞試驗後,我們獲致了其機械性能、疲勞響應以及壽命,所提出的預測方法和模型,其預測結果與實驗數據相比對皆相當準確
The innovative Ti/APC-2 hybrid fiber metal laminates (FMLs) were successfully fabricated. The Grade 1 Titanium thin sheets were treated by chromic acid anodic (CAA) method to overcome the usual problem of delamination and achieved perfect bonding with matrix PEEK eventually. Then, the mechanical properties and fatigue behavior were investigated due to static tensile and cyclic tests. The dimensions and geometry of samples were L×W×t = 240×25.4×1.55 mm3 and L×W×t = 240×25.4×2.6 mm3 for stacking sequence cross-ply [Ti/(0/90)s/Ti]s and quasi-isotropic [Ti/(0/±45/90)/Ti]s hybrid laminates, respectively. They were divided into four groups, such as original samples without a crack, samples with single-edged crack, samples with inclined single-edged crack and samples with inclined double-edged cracks. The initial crack length ai of single-edged cracked samples were 1.5, 3.0, 4.5, and 6.0 mm. The samples with inclined single-edged crack were divided into three crack lengths suck as ai = 1.5, 3.0 and 6.0 mm, and three inclined angles as 45°, 60° and 75°. The samples with inclined double-edged cracks were divided into two groups, such as symmetrical and anti-symmetrical cracks, i.e., α = 0°, 30°, 45°, 60° and ±75°, and β = 0°, ±30°, ±45°, ±60° and ±75°.
From tensile tests the mechanical properties such as ultimate strength, residual strength and stiffness were measured, and the stress vs. strain diagrams for original samples and load vs. displacement diagrams for with cracks were plotted, respectively. Also, we obtained the stress vs. cycles (S-N) curves for original samples and load vs. cycles (P-N) curves and residual lives for cracked samples by cyclic tests.
Next, for original samples, the predicted results of ultimate strength, longitudinal stiffness and the knee point by using the modified rule of mixtures (ROMs) were all in very good agreement with the experimental data. The theoretical model combined the failure mechanisms to predict the results of durability/life were agreed well with experimental data.
For samples with single-edged cracks the longer the crack length is, the more their properties are reduced. The values of stress intensity factor and J-integral of Ti/APC-2 FMLs were obtained. In predicting crack growth rate and residual life, instead of commonly used Paris Law for metals, the modified method was adopted for hybrid cracked laminates.
For samples with inclined single edged crack we used the double linear rule and considered the observed failure mechanisms to predict the lives and found the predicted results were mostly close to the empirical data. We combined the crack length and inclined angle, adopted fracture mechanics and modified the Paris law to accomplish the prediction. However, the predicted results were obviously not so good. Again, considering the failure mechanisms to improve the crack propagation and remaining life we found the predicted lives were acceptable well in comparison with experimental data.
For double-edged crack samples, the smaller the crack inclination was, i.e. 0°, the more their mechanical properties were reduced. The modified Paris law combined the crack length, distance between crack tips and inclined angle was adopted to predict residual lives. The predicted results were acceptable well in comparison with experimental data.
After a serious of tensile and cyclic tests for Ti/APC-2 FMLs we received their mechanical properties and fatigue responses and lives. The adopted methods and models to predict the results were found acceptably well in comparison with experimental data. The final goal was achieved.
致 謝 ii
摘 要 iii
ABSTRACT v
LIST OF FIGURES xi
LISTS OF ABBREVIATIONS 1
LIST OF SYMBOLS 2
I. INTRODUCTION 5
1.1 Background 5
1.1.1 Fiber Metal Laminates 6
1.1.2 Surface Treatment 8
1.1.3 Fatigue 9
1.1.4 Crack 10
1.2 Research Motive and Achievement 11
II. EXPERIMENTS 14
2.1 Materials 14
2.1.1 APC-2 14
2.1.2 Grade 1 Titanium alloy 15
2.2 Pretreatment 15
2.3 Fabrication of Specimens 16
2.4 Testing 17
III. RESULTS 33
3.1 Original samples 33
3.2 Sigle-edged crack samples 33
3.3 Inclined single-edged crack samples 34
3.4 Inclined double-edged crack samples 34
IV. ANALYSIS 53
4.1 Original samples 53
4.1.1 Stress-strain curve 53
4.1.2 S-N curves 57
4.2 Single-edged crack samples 59
4.3 Inclined single-edged crack samples 62
4.4 Inclined double-edged crack samples 65
V. DISCUSSION 98
5.1 Original samples 98
5.2 Single-edged crack samples 102
5.3 Inclined single-edged crack samples 104
5.4 Inclined double-edged crack samples 106
VI. CONCLUSSION AND FUTURE STUDY 116
Future Studies 118
REFERENCES 120
VITA 128
1.Curtis HD. Fundamentals of Aircraft Structural Analysis. New York, United States: Irwin; 1997.
2.Vlot A, Vogelesang LB, de Vries TJ. Towards application of fibre metal laminates in large aircraft. Aircraft Engineering and Aerospace Technology. 1999;71(6):558-570.
3.Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research. 2006;9:247-256.
4.Norris G, Thomas G, Wagner M, Smith CF. Boeing 787 Dreamliner: Flying Redefined: Aerospace Technical Publications International; 2005.
5.Asundi A, Choi AYN. Fiber metal laminates: An advanced material for future aircraft. Journal of Materials Processing Technology. 1997;63(1-3):384-394.
6.Vlot A, Gunnink JW. Fibre metal laminates : an introduction. Netherland: Springer; 2001. 532 p.
7.Cortés P, Cantwell WJ. The prediction of tensile failure in titanium-based thermoplastic fibre–metal laminates. Composites Science and Technology. 2006;66(13):2306-2316.
8.Chang PY, Yeh PC, Yang JM. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2008;496(1-2):273-280.
9.Alderliesten RC. Analytical prediction model for fatigue crack propagation and delamination growth in Glare. International Journal of Fatigue. 2007;29(4):628-646.
10.Castrodeza EM, Ipina JEP, Bastian FL. Experimental techniques for fracture instability toughness determination of unidirectional fibre metal laminates. Fatigue & Fracture of Engineering Materials & Structures. 2002;25(11):999-1008.
11.Sinmazcelik T, Avcu E, Bora MO, Coban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design. 2011;32(7):3671-3685.
12.Gunnink JW, Vlot A, de Vries TJ, van der Hoeven W. Glare technology development 1997-2000. Applied Composite Materials. 2002;9(4):201-219.
13.Alderliesten RC. Damage tolerance of bonded aircraft structures. International Journal of Fatigue. 2009;31(6):1024-1030.
14.Johnson WS, Hammond MW. Crack growth behavior of internal titanium plies of a fiber metal laminate. Composites Part a-Applied Science and Manufacturing. 2008;39(11):1705-1715.
15.Lin CT, Kao PW, Yang FS. Fatigue Behavior of Carbon Fiber-Reinforced Aluminum Laminates. Composites. 1991;22(2):135-141.
16.Vlot A. Impact Properties of Fiber Metal Laminates. Composites Engineering. 1993;3(10):911-927.
17.Sadighi M, Alderliesten RC, Benedictus R. Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering. 2012;49:77-90.
18.Hoo Fatt MS, Lin C, Revilock DM, Hopkins DA. Ballistic impact of GLARE™ fiber–metal laminates. Composite Structures. 2003;61(1-2):73-88.
19.Compston P, Cantwell WJ, Jones C, Jones N. Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber-metal laminate. Journal of Materials Science Letters. 2001;20(7):597-599.
20.Burianek DA, Spearing SM. Delamination growth from face sheet seams in cross-ply titanium/graphite hybrid laminates. Composites Science and Technology. 2001;61(2):261-269.
21.Burianek DA, Spearing SM. Fatigue damage in titanium-graphite hybrid laminates. Composites Science and Technology. 2002;62(5):607-617.
22.Alderliesten R, Rans C, Benedictus R. The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Composites Science and Technology. 2008;68(14):2983-2993.
23.McCombe GP, Etches JA, Mellor PH, Bond IP. Development of a ferromagnetic fibre metal laminate. Composites Part a-Applied Science and Manufacturing. 2011;42(10):1380-1389.
24.Reyes. Villanueva G. Processing and Characterisation of the Mechanical Properties of Novel Fiber-Metal Laminates2000.
25.Abdullah M, Cantwell W. The impact resistance of polypropylene-based fibre–metal laminates. Composites Science and Technology. 2006;66(11-12):1682-1693.
26.Critchlow GW, Brewis DM. Review of Surface Pretreatments for Titanium-Alloys. International Journal of Adhesion and Adhesives. 1995;15(3):161-172.
27.Molitor P, Barron V, Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review. International Journal of Adhesion and Adhesives. 2001;21(2):129-136.
28.Ramani K, Weidner WJ, Kumar G. Silicon sputtering as a surface treatment to titanium alloy for bonding with PEKEKK. International Journal of Adhesion and Adhesives. 1998;18(6):401-412.
29.Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis. 1999;27(7):629-637.
30.Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta. 1999;45(6):921-929.
31.Xiao XR. Modeling of load frequency effect on fatigue life of thermoplastic composites. Journal of Composite Materials. 1999;33(12):1141-1158.
32.Hawileh RA, Abu-Obeidah A, Abdalla JA, Al-Tamimi A. Temperature effect on the mechanical properties of carbon, glass and carbon-glass FRP laminates. Construction and Building Materials. 2015;75:342-348.
33.Hawileh RA, Abdalla JA, Hasan SS, Ziyada MB, Abu-Obeidah A. Models for predicting elastic modulus and tensile strength of carbon, basalt and hybrid carbon-basalt FRP laminates at elevated temperatures. Construction and Building Materials. 2016;114:364-373.
34.Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis: John Wiley & Sons; 2001.
35.Sinke J. Development of Fibre Metal Laminates: concurrent multi-scale modeling and testing. Journal of Materials Science. 2006;41(20):6777-6788.
36.Guo YJ, Wu XR. A theoretical model for predicting fatigue crack growth rates in fibre-reinforced metal laminates. Fatigue & Fracture of Engineering Materials & Structures. 1998;21(9):1133-1145.
37.Chang P, Yang J. Modeling of fatigue crack growth in notched fiber metal laminates. International Journal of Fatigue. 2008;30(12):2165-2174.
38.Maiti SK. Prediction of the Path of Unstable Extension of Internal and Edge Cracks. Journal of Strain Analysis for Engineering Design. 1980;15(4):183-194.
39.Cortes P, Cantwell WJ. The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates. Journal of Reinforced Plastics and Composites. 2004;23(15):1615-1623.
40.Gates N, Fatemi A. Fatigue crack growth behavior in the presence of notches and multiaxial nominal stress states. Engineering Fracture Mechanics. 2016;165:24-38.
41.Ritchie RO, Yu WK, Bucci RJ. Fatigue Crack-Propagation in Arall Laminates - Measurement of the Effect of Crack-Tip Shielding from Crack Bridging. Engineering Fracture Mechanics. 1989;32(3):361-377.
42.Liu Q, Ma JB, Kang L, Sun GY, Li Q. An experimental study on fatigue characteristics of CFRP-steel hybrid laminates. Materials & Design. 2015;88:643-650.
43.Aljabar NJ, Zhao XL, Al-Mahaidi R, Ghafoori E, Motavalli M, Powers N. Effect of crack orientation on fatigue behavior of CFRP-strengthened steel plates. Composite Structures. 2016;152:295-305.
44.Benedetti M, Fontanari V, Monelli BD, Beghini M. A fully parametric weight function for inclined edge cracks with a kink. Engineering Fracture Mechanics. 2015;136:195-212.
45.Singh AK, Sabelkin V, Mall S. Fatigue behavior of double-edge notched oxide/oxide ceramic matrix composite in a combustion environment. Journal of Composite Materials. 2017;51(26):3669-3683.
46.Narasimhachary SB, Saxena A, Newman JC. A double edge notch specimen design for tension–compression fatigue crack growth testing. Engineering Fracture Mechanics. 2012;92:126-136.
47.Catalanotti G, Arteiro A, Hayati M, Camanho PP. Determination of the mode I crack resistance curve of polymer composites using the size-effect law. Engineering Fracture Mechanics. 2014;118:49-65.
48.Tran TK, Kim DJ, Choi E. Behavior of double-edge-notched specimens made of high performance fiber reinforced cementitious composites subject to direct tensile loading with high strain rates. Cement and Concrete Research. 2014;63:54-66.
49.Wilson CD, Mani P. Plastic J-integral calculations using the load separation method for the double edge notch tension specimen. Engineering Fracture Mechanics. 2008;75(18):5177-5186.
50.Nunes LCS. Load-displacement behavior for double-edge cracked plate of polytetrafluoroethylene. Polymer Testing. 2015;41:33-39.
51.Qing X, Qin Y. An experimental investigation of carbon-fiber/aluminium laminates with double-edge cracks. Composites Science and Technology. 1995;53(4):393-397.
52.Smith E. A JD expression for the double edge notch tension configuration. Engineering Fracture Mechanics. 1995;51(6):949-953.
53.Lan X, Noda N-A, Zhang Y, Michinaka K. Single and double edge interface crack solutions for arbitrary forms of material combination. Acta Mechanica Solida Sinica. 2012;25(4):404-416.
54.Yan F, Feng X-T, Pan P-Z, Li S-J. Discontinuous cellular automaton method for crack growth analysis without remeshing. Applied Mathematical Modelling. 2014;38(1):291-307.
55.McLean MJ, Wade CA, Watanabe M, Vinci RP. Microscale Fracture Toughness of Bismuth Doped Copper Bicrystals Using Double Edge Notched Microtensile Tests. Experimental Mechanics. 2014;54(4):685-688.
56.Jen MHR, Chang CK, Sung YC. Fabrication and mechanical properties of Ti/APC-2 hybrid nanocomposite laminates at elevated temperatures. Journal of Composite Materials. 2015;50(15):2035-2045.
57.Jen MHR, Tseng YC, Wu CH. Manufacturing and mechanical response of nanocomposite laminates. Composites Science and Technology. 2005;65(5):775-779.
58.Ito T, Suganuma T, Wakashima K. A micromechanics-based analysis for tailoring glass-fiber-reinforced thermoplastic laminates with near-zero coefficients of thermal expansion. Composites Science and Technology. 2000;60(9):1851-1861.
59.Abdullah MR, Cantwell WJ. The impact resistance of polypropylene-based fibre-metal laminates. Composites Science and Technology. 2006;66(11-12):1682-1693.
60.Barnes JA, Simms IJ, Farrow GJ, Jackson D, Wostenholm G, Yates B. Thermal-Expansion Characteristics of Peek Composites. Journal of Materials Science. 1991;26(8):2259-2271.
61.Barnes JA, Simms IJ, Farrow GJ, Jackson D, Wostenholm G, Yates B. Thermal Expansion Behaviour of Thermoplastic Composite Materials. Journal of Thermoplastic Composite Materials. 1990;3(1):66-80.
62.Jeronimidis G, Parkyn AT. Residual-Stresses in Carbon Fiber-Thermoplastic Matrix Laminates. Journal of Composite Materials. 1988;22(5):401-415.
63.Bhat S, Narayanan S. Quantification of fibre bridging in Mode I cracked Glare without delaminations. European Journal of Mechanics a-Solids. 2014;43:152-170.
64.Irwin G, Krafft J, Paris P, Wells A. Basic aspects of crack growth and fracture. DTIC Document; 1967.
65.François D, Pineau A, Zaoui A. Mechanical behaviour of materials: Springer; 1998.
66.Anderson TL. Fracture Mechanics: Fundamentals and Applications, Third Edition: Taylor & Francis; 2005.
67.Srilakshmi R, Ramji M, Chinthapenta V. Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC. Engineering Fracture Mechanics. 2015;134:182-201.
68.Gross D, Seelig T. Fracture Mechanics: With an Introduction to Micromechanics. Mechanical Engineering. 2006.
電子全文 電子全文(網際網路公開日期:20230221)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔