[1]馬振基(民98)。高分子複合材料‧上冊(初版)。台北市:國立編譯館。
[2]Vlot, A. and Jan, W. G. (2001). Fibre Metal Laminates: An Introduction. Netherlands: Kluwer Academic Publishers.
[3]Vogelesang, L.B. and Gunnink, J.W. (1983). ARALL, a material for the next generation of aircraft (Delft University of Technology).
[4]Roebroeks, G. (1991). Towards GLARE—The development of a fatigue insensitive and damage tolerant aircraft material (Ph.D. Thesis, Delft University of Technology, Delft).
[5]Ritchie, R. O., Yu, W. and Bucci, R. J. (1989). Fatigue Crack Propagation in ARALL® Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging. Engineering Fracture Mechanics, 32(3), 361-377.
[6]Cortes, P. and Cantwell, W. J. (2004). The Tensile and Fatigue Properties of Coburn Fiber-reinforced PEEK-titanium Fiber-metal Laminates. Journal of Reinforced Plastics and Composites, 23(15), 1615-1623.
[7]Reyes, G. (2002). Processing of Characterisation of the Mechanical Properties of Novel Fiber-metal Laminates (Ph.D. Thesis, University of Liverpool).
[8]Irwin, G. R. (1957). Analysis of Stresses and Strains near the End of Crack Traversing a Plate. Journal of Applied Mechanics, 24, 109-114.
[9]Erdogan, F. and Sih, G. C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), 519-525.
[10]Wu, H. C. (1974). Dual Failure Criterion for Plain Concrete. Journal of the Engineering Mechanics Division, 100(6), 1167-1181.
[11]Maiti, S. K. (1979). Unstable Edge Crack Extensions During Shearing of Bars (PhD Thesis, Indian Institute of Technology, Bombay).
[12]Maiti, S. K.(1980). Prediction of the Path of Unstable Extension of Internal and Edge Cracks. Journal of Strain Analysis, 15(4), 183-194.
[13]Sih, G. C.(1973). Some Basic Problems in Fracture Mechanics and New Concepts. Engineering Fracture Mechanics, 5(2), 365-377.
[14]Nuismer, R. J. (1975). An Energy Release Rate Criterion for Mixed Mode Fracture. International Journal of Fracture, 11(2), 245-250.
[15]Packman, P. F. (1975). The Role of Interferometry in Fracture Studies. Kobayashi A.S. (Ed), Society for Experimental Stress Analysis Monograph 2 (59-87). U.S.: Iowa State Press.
[16]Smith, C.W. (1975). Use of Three-Dimensional Photoelasticity and Progress in Related Areas. Kobayashi A.S. (Ed), Society for Experimental Stress Analysis Monograph 2 (3-58). U.S.: Iowa State Press.
[17]Asghar, A., Nasir, M.A., QAYYUM, F., Shah, M., Azeem, M., Nauman, S. and Khushnood, S. (2017). Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue and Fracture of Engineering Material and Structures, 40(7), 1086-1100.
[18]劉俊吾(2009)。鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討(碩士論文)。取自臺灣博碩士論文系統。(系統編號097NSYS5490047)[19]黃韋翔(2014)。鈦合金/碳纖維/聚醚醚酮複材積層板含單邊裂縫之疲勞破壞與殘留壽命之探討(碩士論文) 。取自臺灣博碩士論文系統。(系統編號102NSYS5490060)[20]周惠琪(2015)。鈦合金/碳纖維/聚醚醚酮複材積層板含單邊傾斜裂縫之疲勞破壞與殘留壽命之探討(碩士論文)。取自http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0626115-110709
[21]顏煜峰(2015)。雙邊傾斜裂縫鈦合金/碳纖維/聚醚醚酮複材積層板之疲勞破壞與殘留與壽命探討(碩士論文) 。取自http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0625116-124540
[22]Lütjering, G. and Williams, J. C. (2007). Titanium (2nd Ed). Germany: Springer.
[23]洪胤庭(2013)。純鈦及鈦合金特性及製程介紹。中工高雄會刊,21(1),12-22。
[24]Masterton, W. L. and Hurley, C. N. (2009). Chemistry Principles and Reactions (6th Ed). U.S.: Brooks/cole.
[25]Tada, H., Paris, P. C. and Irwin, G. R.(1985). The Stress Analysis of Cracks Handbook (2nd Ed). U.S.: ASME Press.
[26]Glibson, R. F. (2012). Principle of Composite Material Mechanics (3rd Ed). U.S.:CRC Press.
[27]Jen, M. H., Tseng, Y. C., Kung, H. K. and Huang, J.C.(2008). Fatigue response of APC-2 composite laminates at elevated temperatures. Composites Part B: Engineering 39(7-8), 1142-1146.