跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡菁
研究生(外文):Yi-Jing Chen
論文名稱:含單邊裂縫之鈦/碳纖維/聚醚醚酮複材積層板於高溫下之機械性質與疲勞破壞
論文名稱(外文):Mechanical Properties and Fatigue Fracture of Single-edge-cracked Ti/APC-2 Hybrid Composite Laminates at High Temperature
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:102
中文關鍵詞:單邊裂縫積層板高溫疲勞碳纖維預浸布
外文關鍵詞:High temperature fatigueLaminatesAPC-2TitaniumSingle-edged crack
相關次數:
  • 被引用被引用:4
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文以含單邊裂縫之鈦/碳纖維/聚醚醚酮十字疊複材積層板作為研究對象,探討其於高溫下之機械性質及疲勞破壞。此積層板層數為三層,最外面兩層為商業用1級純鈦(CP Titanium Grade 1),厚度為0.5 mm,第二層則為碳纖維預浸布,其疊序為[0/90]s,厚度為0.55 mm。而裂縫長度固定為3 mm,裂縫傾角為0°、45° 和"60°,環境溫度則分別為100°C、125°C和150°C。
實驗主要分為靜態拉伸試驗及疲勞試驗,皆使用MTS-810萬能材料試驗機來進行,而環境溫度則由MTS-651環境控制箱來提供實驗所需之高溫環境。根據靜態拉伸的結果可以得知,當裂縫傾角越小時,單邊裂縫積層板的極限負載越低,而當環境溫度升高,極限負載也隨之下降,尤其當環境溫度到150°C時,其下降幅度越明顯,這是由於此時已超過聚醚醚酮基材的玻璃轉移溫度(Tg=143°C)。而疲勞試驗採用負載控制拉伸-拉伸(Tension-tension)疲勞的方式進行,其波形為正弦波,應力比為0.1,頻率為5 Hz。根據疲勞試驗的結果可以得知,單邊裂縫積層板的疲勞強度會隨著裂縫傾角的降低及環境溫度的增加而下降,且當裂縫傾角越小時,疲勞振次曲線擬合會趨近於一條直線。
The mechanical properties and fatigue fracture of single-edge-cracked Ti/APC-2 hybrid composite laminates at high temperature were investigated. The hybrid composite laminate consists of two layers of Titanium Grade 1 with 0.5 mm thickness and one layer of cross-ply APC-2 with 0.55 mm thickness which is between the two layers of titanium. APC-2 was stacked according to cross-ply [0/90]s sequences. The crack length was a constant of 3 mm and cracked-angles were 0°, 45° and 60°, respectively. The test temperature were 100°C, 125°C and 150°C, respectively.
Tensile tests and fatigue tests were carried out by using MTS-810 Material Testing Systems, while the test temperature was controlled by MTS-651 Environmental Chamber. From the results of tensile tests, we obtained that ultimate strength decreased with the increasing of test temperature and the decreasing of cracked-angle, especially at 150°C. Because the temperature 150°C was over the glass transition temperature of matrix of PEEK (Tg=143°C), the ultimate strength decreased significantly. The fatigue tests were carried out by using load control mode and tension-tension mode with sinusoidal loading wave, frequency of 5 Hz and stress ratio R = 0.1. According to the results of fatigue tests, we received that fatigue strength decreased with the decreasing of cracked-angle and the increasing of test temperature. The S-N curve would be approaching to straight line, when the cracked-angle was decreasing.
論文審定書 i
致 謝 ii
摘 要 iii
目 錄 v
圖 次 viii
第一章 緒論 1
1.1 前言 1
1.2 複合材料概述 1
1.3研究方向 2
1.4 文獻回顧 2
1.5 組織章節 4
第二章 實驗材料與製程 5
2.1 實驗材料介紹 5
2.1.1 鈦金屬 5
2.1.2 APC-2 Pre-preg (碳纖維預浸布,碳纖維/聚醚醚酮,AS-4/Peek) 6
2.2 儀器設備之介紹 6
2.3 Ti/APC-2複合材料積層板之研製 7
2.3.1 材料前處理 7
2.3.3 熱壓成型製程 8
2.3.4 試片之裁切與加工 9
2.4 靜態拉伸與疲勞試驗 10
2.4.1 拉伸試驗 10
2.4.2 疲勞試驗 10
第三章 靜態拉伸試驗 16
3.1 靜態拉伸試驗方法 16
3.2 靜態拉伸試片編碼 17
3.3 靜態拉伸試驗結果 17
3.3.1 同樣裂縫傾角結果之比較 17
3.3.2 同樣環境溫度結果之比較 18
第四章 疲勞試驗 29
4.1 疲勞試驗方法 29
4.2 試片編碼說明 29
4.3 疲勞試驗結果 30
4.3.1 同樣裂縫傾角結果之比較 30
4.3.2 同樣環境溫度結果之比較 30
第五章 分析與討論 45
5.1 未受損之Ti/APC-2十字疊複材積層板機械性質 45
5.1.1 混合理論 45
5.1.2 拉伸試驗之數據與混合理論之理論值比較 46
5.1.3 Ti/APC-2十字疊複材積層板之應力-應變關係 46
5.2 Ti/APC-2十字疊複材積層板之應力強度因子 K 47
5.2.1 應力強度因子(Stress Intensity Factor, S.I.F) 47
5.3破裂型態之探討 48
5.3.1 金屬-纖維積層板的破裂機制 48
5.3.2 拉伸破壞 49
5.3.3 疲勞破壞 50
5.4 極限負載 51
5.4.1 溫度對於極限負載的影響 51
5.4.2 裂縫傾角對於極限負載的影響 52
5.5 抗疲勞性質 52
5.5.1溫度對於疲勞強度的影響 53
5.5.2裂縫傾角對於疲勞強度的影響 53
第六章 結論 71
參考文獻 72
附錄一 實驗儀器 75
附錄二 Ti/APC-2複材積層板於高溫下之拉伸數據 81
附錄三 單邊裂縫積層板於常溫下之拉伸數據 84
附錄四 單邊裂縫積層板於常溫下之疲勞數據 87
[1]馬振基(民98)。高分子複合材料‧上冊(初版)。台北市:國立編譯館。
[2]Vlot, A. and Jan, W. G. (2001). Fibre Metal Laminates: An Introduction. Netherlands: Kluwer Academic Publishers.
[3]Vogelesang, L.B. and Gunnink, J.W. (1983). ARALL, a material for the next generation of aircraft (Delft University of Technology).
[4]Roebroeks, G. (1991). Towards GLARE—The development of a fatigue insensitive and damage tolerant aircraft material (Ph.D. Thesis, Delft University of Technology, Delft).
[5]Ritchie, R. O., Yu, W. and Bucci, R. J. (1989). Fatigue Crack Propagation in ARALL® Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging. Engineering Fracture Mechanics, 32(3), 361-377.
[6]Cortes, P. and Cantwell, W. J. (2004). The Tensile and Fatigue Properties of Coburn Fiber-reinforced PEEK-titanium Fiber-metal Laminates. Journal of Reinforced Plastics and Composites, 23(15), 1615-1623.
[7]Reyes, G. (2002). Processing of Characterisation of the Mechanical Properties of Novel Fiber-metal Laminates (Ph.D. Thesis, University of Liverpool).
[8]Irwin, G. R. (1957). Analysis of Stresses and Strains near the End of Crack Traversing a Plate. Journal of Applied Mechanics, 24, 109-114.
[9]Erdogan, F. and Sih, G. C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4), 519-525.
[10]Wu, H. C. (1974). Dual Failure Criterion for Plain Concrete. Journal of the Engineering Mechanics Division, 100(6), 1167-1181.
[11]Maiti, S. K. (1979). Unstable Edge Crack Extensions During Shearing of Bars (PhD Thesis, Indian Institute of Technology, Bombay).
[12]Maiti, S. K.(1980). Prediction of the Path of Unstable Extension of Internal and Edge Cracks. Journal of Strain Analysis, 15(4), 183-194.
[13]Sih, G. C.(1973). Some Basic Problems in Fracture Mechanics and New Concepts. Engineering Fracture Mechanics, 5(2), 365-377.
[14]Nuismer, R. J. (1975). An Energy Release Rate Criterion for Mixed Mode Fracture. International Journal of Fracture, 11(2), 245-250.
[15]Packman, P. F. (1975). The Role of Interferometry in Fracture Studies. Kobayashi A.S. (Ed), Society for Experimental Stress Analysis Monograph 2 (59-87). U.S.: Iowa State Press.
[16]Smith, C.W. (1975). Use of Three-Dimensional Photoelasticity and Progress in Related Areas. Kobayashi A.S. (Ed), Society for Experimental Stress Analysis Monograph 2 (3-58). U.S.: Iowa State Press.
[17]Asghar, A., Nasir, M.A., QAYYUM, F., Shah, M., Azeem, M., Nauman, S. and Khushnood, S. (2017). Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue and Fracture of Engineering Material and Structures, 40(7), 1086-1100.
[18]劉俊吾(2009)。鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討(碩士論文)。取自臺灣博碩士論文系統。(系統編號097NSYS5490047)
[19]黃韋翔(2014)。鈦合金/碳纖維/聚醚醚酮複材積層板含單邊裂縫之疲勞破壞與殘留壽命之探討(碩士論文) 。取自臺灣博碩士論文系統。(系統編號102NSYS5490060)
[20]周惠琪(2015)。鈦合金/碳纖維/聚醚醚酮複材積層板含單邊傾斜裂縫之疲勞破壞與殘留壽命之探討(碩士論文)。取自http://etd.lib.nsysu.edu.tw/ETD-db/
ETD-search-c/view_etd?URN=etd-0626115-110709
[21]顏煜峰(2015)。雙邊傾斜裂縫鈦合金/碳纖維/聚醚醚酮複材積層板之疲勞破壞與殘留與壽命探討(碩士論文) 。取自http://etd.lib.nsysu.edu.tw/ETD-db/
ETD-search-c/view_etd?URN=etd-0625116-124540
[22]Lütjering, G. and Williams, J. C. (2007). Titanium (2nd Ed). Germany: Springer.
[23]洪胤庭(2013)。純鈦及鈦合金特性及製程介紹。中工高雄會刊,21(1),12-22。
[24]Masterton, W. L. and Hurley, C. N. (2009). Chemistry Principles and Reactions (6th Ed). U.S.: Brooks/cole.
[25]Tada, H., Paris, P. C. and Irwin, G. R.(1985). The Stress Analysis of Cracks Handbook (2nd Ed). U.S.: ASME Press.
[26]Glibson, R. F. (2012). Principle of Composite Material Mechanics (3rd Ed). U.S.:CRC Press.
[27]Jen, M. H., Tseng, Y. C., Kung, H. K. and Huang, J.C.(2008). Fatigue response of APC-2 composite laminates at elevated temperatures. Composites Part B: Engineering 39(7-8), 1142-1146.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊