(44.192.112.123) 您好!臺灣時間:2021/03/04 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥文
研究生(外文):Yan-Wen Chen
論文名稱:含孔聚丙烯薄膜之拉伸與疲勞實驗探討
論文名稱(外文):Experimental Investigation of Notched Polypropylene Thin Films due to Tension and Fatigue Loads
指導教授:任明華任明華引用關係
指導教授(外文):Ming- Hwa R.Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:97
中文關鍵詞:應變壽命曲線聚丙烯中央穿孔疲勞皺褶薄膜
外文關鍵詞:WrinklesPPCentrally NotchedStrain-Life CurveThin filmsFatigue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
本文旨在探討聚丙烯薄膜材料於中心區域作孔洞排列改變,觀察其拉伸起皺現象及疲勞特性。本文在矩形聚丙烯薄膜中央位置製作不同孔洞數及不同孔洞排列後進行拉伸起皺實驗,以此來獲得材料機械性質與拉伸數據;疲勞實驗採用應變控制的設定,將實驗過後的疲勞數據繪製成疲勞壽命圖,分析聚丙烯薄膜之疲勞特性。
本研究使用MTS Model 42 微拉伸試驗機,進行速率1 mm/min準靜態拉伸試驗並於試片前方架設攝影機以非接觸式量測,記錄薄膜皺褶出現順序,同時記錄負載與伸長量,繪製出應力應變圖,從圖中得到聚丙烯薄膜的降伏強度、降伏應變、楊氏係數等各種性能。針對厚度 8 μm的聚丙烯薄膜,於試片中心位置裁切直徑 10mm圓孔;孔洞種類分為中央一孔、中央直列兩孔、中央橫列兩孔、中央十字型四孔及中央X字型四孔,兩孔中心距為兩倍直徑。將拉伸試驗數據做為標準,對PP薄膜進行低週期疲勞試驗,設定頻率0.3 Hz,應變比0.1,藉此可獲得聚丙烯之疲勞特性。
根據實驗結果得知,中央含孔之薄膜皺褶變化具有規律性,在彈性區間內可分兩階段:面內變形階段、面外變形階段,但面內變形階段無法觀察,因此本文旨在探討面外變形階段。藉由實驗結果瞭解,不同的孔洞數量會影響皺褶的形貌。透過疲勞實驗,可以取得PP薄膜的彈性與塑性曲線,將兩條曲線繪製成完整應變壽命圖,觀察此圖可將疲勞特性區分為彈性區域與塑性區域,代入總應變振幅公式得到總和應變壽命曲線,此疲勞壽命曲線預測建立在PP薄膜疲勞實驗數據上。
The thesis aims to investigate the phenomenon of wrinkles and fatigue behavior of the central hole arrangement in rectangular Polyproplyene(PP) thin films at room temperature. The number of holes and the arrangement of holes in the central position of the rectangular PP films were used to perform the stretching tests. The wrinkles and mechanical properties and tensile data of the material were obtained. In order to understand the fatigue characteristics of PP films, the tension-tension low cycle fatigue tests by using strain control were conducted to receive the results of fatigue properties and life.
All samples were bonded on the cardboard frames and clipped in an MTS Model42 micro-tensile system. Round holes with diameters of 10 mm were cut centrally in PP films with the thickness 8 μm. The holes in the films were arranged in three ways. One was to cut a hole in center, second were to cut two holes with a distance of 20mm apart around the center vertically (2V), horizontally (2H), third type were four holes with a distance of 20 mm apart around the center just like symbol + (4+) and x (4x).
The experimental evidences show that the evolution of wrinkles can be divided into two stages from the elastic state of in-plane deformation to the plastic state of out-of-plane deformation. At elastic state the in-plane deformation was too hard to be observed, therefore, our focus was on exploring the out-of-plane deformation stage.
According to the fatigue test, the elastic and plastic curves of the PP film were obtained, and the two curves were combined as a complete strain-life curve. One hole and two holes types specimens, the first wrinkle appears near the hole, then wrinkles expand slowly to both sides of the specimen. For four holes samples, the wrinkles will grow in the adjacent side of the hole, grow to both sides afterwards.
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖 次 vii
表 次 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 薄膜皺褶現象 2
1-4 研究方向 3
1-5 文獻回顧 4
1-6 組織與章節 7
第二章 試驗方法 8
2-1 薄膜材料 8
2-2 儀器設備 9
2-3 試驗簡述 10
2-4 試片準備與製作 10
2-5 拉伸試驗與疲勞試驗 11
2-5-1 常溫拉伸試驗 11
2-5-2 常溫疲勞試驗 11
2-5-3 實驗儀器設置 12
2-5-4 薄膜固定框架設計 12
第三章 拉伸試驗結果 19
3-1 常溫拉伸試驗結果 19
3-2 薄膜皺褶量測結果 20
第四章 疲勞拉伸試驗結果 54
第五章 討論 57
5-1 中央一孔洞PP薄膜討論 57
5-2 中央直列兩孔與橫列兩孔PP薄膜討論 60
5-2-1中央直列兩孔PP薄膜討論 60
5-2-2中央橫列兩孔PP薄膜討論 62
5-3 中央十字型四孔與X字型四孔PP薄膜討論 63
5-3-1 中央十字型四孔PP薄膜討論 63
5-3-2 中央X字型四孔PP薄膜討論 64
5-4 五種類型孔洞相互比較 65
5-5 疲勞作用對PP薄膜之影響 67
5-5-1 PP薄膜之疲勞現象 67
5-5-2 PP薄膜之疲勞機制 68
5-5-3 PP薄膜之疲勞試驗問題討論 68
第六章 結論 79
參考文獻 81
附錄 PP薄膜FEM模擬 85
1.Lake, M. S., Peterson, L. D., Levine, M. B. “Rationale for Defining Structural Requirements for Large Space Telescopes.” Journal of Spacecraft and Rockets 39. 5 (2002): 674-681.
2.黃亦豪,矩形薄膜於拉伸作用下皺褶變形之實驗探討,國立中山大學機械與
機電工程學系碩士論文,2014。
3.劉庭揚,薄膜之拉伸與疲勞作用之探討,國立中山大學機械與機電工程學系碩士論文,2016。
4.陳晏鈴,中央含孔矩形薄膜其拉伸皺褶之探討,國立中山大學機械與機電工程學系碩士論文,2017。
5.Wagner, H. “Flat sheet metal girder with very thin metal web. Part Ⅰ : general theories and assumptions.” Zeitschrift fur Flugtechnik und Motorluftschrift 20. 8 (1929): 200-207.
6.Freeland, R. E., Bilyeu, G. D., Veal, G. R., Steiner, M. D., Carson, D. E. “Large Inflatable Deployable Antenna Flight Experiment Results.” International Astronautical Federation 41. 4 10 (1998): 267-277.
7.Murphy, D. M. and Murphey, T. W., Mikulas, M. M., Adler, A. L. “A Method to Quantify the Thrust Degradation Effects of Structural Winkles in Solar Sails.” In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado, April 2002.
8.Kukathasan, S. and Pellegrino, S. “Nonlinear vibration of wrinkled membrances.” In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia, April 2003.
9.Silvestre, N. “Wrinkling of stretched thin sheets: Is restrained Poisson’s effect the sole cause?” Engineering Structures 106 (2016): 195-208.
10.Lecieux, Y. and Bouzidi, R. “Experimental analysis on membrane wrinkling under biaxial load – Comparison with bifurcation analysis.” International Journal of Solids and Structures 47 (2010): 2459-2475.
11.Mikulas, M. M. “Behavior of a Flat Stretched Membrane Wrinkled by the Rotation of an Attached Hub.” NASA Technical Note NASA TN D-2456, 1964.
12.Miyamura, T. “Wrinkling on Stretched Circular Membrane Under In-Plane Torsion” Engineering Structure 22. 11 (2000):1407-1425.
13.Nayyar, V., Ravi-Chandar, K., Huang, R. “Stretch-Induced Wrinkling of Polyethylene Thin Sheets: Experiments and Modeling.” International Journal of Solids and Structures 51. 9 (2014): 1847-1858.
14.Wesley Wong, Y. and Pellegrino, S. “Wrinkled Membranes Part I: Experiments.”
Journal of Mechanics of Materials and Structures 1. 1 (2006): 3-25.
15.Blandino, J. R., Johnston, J. D., Miles, J. J., Soplop, J. S. “Thin Film Membrane Wrinkling Due to Mechanical and Thermal Loads” In: 19th AIAA Applied Aerodynamics Conference. Anaheim, California, April 2001.
16.Flores-Johnson, E. A., Rupert, T. J., Hemker, K. J., Gianola, D. S., Gan, Y. “Modelling Wrinkling Interactions Produced by Patterned Defects in Metal Thin Films.” Extreme Mechanics Letters 4 (2015): 175-185.
17.Taylor, M., Bertoldi, K., Steigmann, D. J. “Spatial Resolution of Wrinkle Patterns in Thin Elastic Sheets at Finite Strain.” Journal of the Mechanics and Physics of Solids 62 (2014): 163-180.
18.Nayyar, V., Ravi-Chandar, K., Huang, R. “Stretch-Induced Stress Patterns and Wrinkles in Hyperelastic Thin Sheets.” International Journal of Solids and Structures 48 (2011): 3471-3483.
19.Yan, D., Zhang, K., Peng, F., Hu, G. “Tailoring the Wrinkle Pattern of A Microstructured Membrane.” Applied Physics Letters 105 (2014): 071905.
20.Mei, H., Huang, R., Chung, Y., Stafford, C. M., Yu, H. H. “Buckling Modes of Elastic Thin Films on Elastic Substrates.” Applied Physics Letters 90 (2007): 151902.
21.Wang, C. G., Du, X. W., Tan, H. F. and He, X. D. “A new computational method for wrinkling analysis of gossamer space structures.” International Journal of Solids and Structures 46 (2010): 2459-2475.
22.Dharamsi, U. K., Evanchick, D. M. and Blandino, J. R. “Comparing photogrammetry with a conventional displacement measurement technique on a 0.5 m square kapton membrance.” In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado, April 2002.
23.Hong, S., Weil, R. “Low cycle fatigue of thin copper foils.” Thin Solid Films 283 (1996): 175-181.
24.Klein, M., Hadrboletz, A., Weiss, B., Khatibi, B. “The ‘size effect’ on the stress-strain, fatigue and fracture properties of thin metallic foils.” Materials Science & Engineering:A 319- 321 (2001): 924-928.
25.Zhang, G.P., Sun, K.H., Zang, B., Gong, J., Sun, C., Wang, Z.G. “Tensile and fatigue strength of ultrathin copper films.” Materials Science & Engineering:A 483- 484 (2008): 387-390.
26.Sim, G.D., Lee, Y.S., Lee, S.B, Vlassak, J.J. “Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films.” Materials Science & Engineering:A 575 (2013): 86-93.
27.陳逸穎,矩形金屬薄膜之疲勞特性探討,國立中山大學機械與機電工程學系碩士論文,2015。
28.Lee, Y. -L., Pan, J., Hathaway, R. and Barkey, M. Fatigue Testing and Analysis: Theory and Practice. Butterworth: Heinemann, 2005.
29.Haseganu E. M., Steigmann D. J. “Analysis of partly wrinkled membranes by the method of dynamic relaxation.” Computational Mechanics 14 (1994): 596-614.
30.Iasawa, T., Natori, M., C., Higuchi, K. “Evaluation of Tension Field Theory for Wrinkling Analysis With Respect to the Post-Buckling Study.” Journal of Applied Mechanics 71 (2004): 532-540.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔