[1]W.M. Thomas, E. D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes. (1991). Friction stir butt welding. International Patent Application. PCT/GB92/02203 and GB Patent Application 9125978.8.
[2]W.M. Thomas, E.D. Nicholas, R.E. Dolby, C.J. Jones and R.H. Lilley. Friction plug extrusion. International Patent. PCT/GB92/01540.21.8.92.
[3]M. Matsushita, Y. Kitani, R. Ikeda, K. Oi and H. Fujii. (2011). Development of friction stir welding of high strength steel sheet. Science and Technology of Welding and Joining, 16(2), 181-187.
[4]K. Nakata. (2005). Friction stir welding of copper and copper alloys. Welding International, 19(12), 929-933.
[5]M. Dehghani, A. Amadeh and S.A.A. Akbari Mousavi. (2013). Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Materials and Design, 49, 433-411.
[6]Y. Wei, J. Li, J. Xiong, F. Huang, F. Zhang and S.H. Raza. (2012). Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Materials Characterization, 71, 1-5.
[7]A. Abdollah-Zadeh, T. Saeid and B. Sazgari. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538.
[8]R.S. Mishra and Z.Y. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50(1-2), 1-78.
[9]H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu and C. Li. (2009). Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Science and Technology of Welding and Joining, 14(6), 577-583.
[10]G.M. Xie, Z.Y. Ma, and L. Geng. (2007). Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scripta Materialia, 57(2), 73-76.
[11]J.J. Shen, H.J. Liu and F. Cui. (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Materials and Design, 31(8) 3937–3942.
[12]A. Azizi, R. Vatankhah Barenji, A. Vatankhah Barenji and M. Hashemipour. (2016). Microstructure and mechanical properties of friction stir welded thick pure copper plates. The International Journal of Advanced Manufacturing Technology, 86(5-8), 1985-1995.
[13]Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering A, 415(1-2), 250-254.
[14]H.B. Chen, K. Yan, T. Lin, S.B. Chen, C.Y. Jiang and Y. Zhao. (2006). The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Materials Science and Engineering A, 433(1-2), 64-69.
[15]D.G. Hattingh, C. Blignault, T.I.van Niekerk and M.N. James. (2008). Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. Journal of Materials Processing Technology, 203(1-3), 46-57.
[16]G. Padmanaban and V. Balasubramanian. (2009). Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy – An experimental approach. Materials & Design, 30(7), 2647-2656
[17]H. Khodaverdizadeh, A. Heidarzadeh and T. Saeid. (2013). Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Materials and Design, 45, 265-270.
[18]Vinayak Malik, N.K. Sanjeev, H. Suresh Hebbar and Satish V. Kailas. (2014). Investigations on the Effect of Various Tool Pin Profiles in Friction Stir Welding Using Finite Element Simulations. Procedia Engineering, 97, 1060-1068.
[19]M.S. Srinivasa Rao, B.V.R. Ravi Kumar and M. Manzoor Hussain. (2017). Experimental study on the effect of welding parameters and tool pin profiles on the IS:65032 aluminum alloy FSW joints. Materials Today: Proceedings, 4(2), 1394-1404.
[20]W.B. Lee and S.B. Jung. (2004). The joint properties of copper by friction stir welding. Materials Letters, 58(6), 1041-1046.
[21]Y.F. Sun and H. Fujii. (2010). Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Materials Science and Engineering A, 527(26), 6879-6886.
[22]A. Heidarzadeh and T. Saeid. (2013). Prediction of mechanical properties in friction stir welds of pure copper, Materials and Design, 52, 1077-1087.
[23]J. Teimurnezhad, H. Pashazadeh and A. Masumi. (2016). Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints. Journal of Manufacturing Processes, 22, 254-259.
[24]吳致穎(民國105年)。厚度10 mm 的純銅板之摩擦攪拌銲接研究。國立中山大學機械與機電工程研究所碩士論文。[25]蔡和庭(民國106年)。厚度15 mm 的純銅板摩擦攪拌銲接之機械性質及微觀結構研究。國立中山大學機械與機電工程研究所碩士論文。[26]L. Cederqvist and T. Öberg. (2008). Reliability study of friction stir welded copper canisters containing Sweden''s nuclear waste. Reliability Engineering & System Safety, 93(10), 1491-1499.