跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊貽婷
研究生(外文):Yi-ting Chuang
論文名稱:使用導電高分子工具電解複合磨粒拋光模具鋼方孔表面之研究
論文名稱(外文):Studies on Electrolytic Abrasive Polishing of Square Inner Surface of Die Steel Using Conductive Polymer Tool
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):Rong-Tsong LeeYuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:113
中文關鍵詞:導電高分子模具鋼方孔鏡面電解複合磨粒拋光
外文關鍵詞:MirrorElectrolytic abrasive polishingDie steelConductive polymerSquare hole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用方體導電高分子ESD 410C作為工具電極及多軸運動式電解複合拋光機,分別對方孔邊長12及8 mm之SKD61熱作模具鋼之內表面進行電解複合磨粒拋光。探討氧化鋁磨粒粒徑(3, 1, 0.3 μm)、加工負荷(0.3 ~ 0.5 N)、加工電流(0 ~ 200 mA)以及加工時間(0 ~ 8 min)等實驗參數,對工件內表面粗糙度Rmax 、Ra之影響。
純磨粒實驗(不通電)可得知,使用含磨粒粒徑1 μm的電解液中,在加工負荷0.4 N下,加工時間8分鐘時之工件表面粗糙度由Rmax ≒ 0.5 μm、Ra ≒ 0.12 μm降至Rmax ≒ 0.26 μm、Ra ≒ 0.059 μm。無磨粒的純電解之實驗可得知,在加工負荷0.4 N、加工電流60 mA下,加工時間8分鐘後之工件表面粗糙度Rmax ≒ 0.29 μm、Ra ≒ 0.065 μm。
兩階段的電解複合磨粒拋光實驗,第一階段係使用添加磨粒粒徑1 μm的電解液,在加工電流60 mA、加工負荷0.4 N下,加工時間4分鐘之工件表面粗糙度為Rmax ≒ 0.23 μm、Ra ≒0.052 μm。第兩階段更換磨粒粒徑為0.3 μm,其餘參數不變。經第兩階段加工後之工件之表面粗糙度Rmax ≒ 0.16 μm、Ra ≒0.029 μm,工件內表面達到光亮鏡面。
最後,在工具電極進給情況下,電解複合磨粒拋光對工件全表面進行實驗,在含磨粒粒徑1 μm的電解液中以及加工電流60 mA與負荷0.4 N下,電解複合磨粒拋光兩種邊長12與8 mm之方孔,於加工時 間24分鐘後之工件表面粗糙度達到Rmax ≒ 0.017 ~ 0.019 μm、Ra ≒ 0.037 ~ 0.041 μm,工件內表面均達成光亮鏡面。
In this study, a square shape of conductive polymer (ESD 410C) was employed as a tool electrode to electrolytic abrasive polishing the inner surface of SKD61 steel with the square hole 12 and 8 mm in length using a polishing machine with multi-axis motions. Experiments were carried out to understand effects of the alumina abrasive particle size (3, 1, and 0.3 μm), load (0.3 ~ 0.5 N), current (0 ~ 200 mA) and polishing time (0 ~ 8 min) on the surface roughness of the polished surface.
In the abrasive polishing under a load of 0.4 N and the abrasive size of 1 μm, the Rmax value decreased from 0.5 μm to 0.26 μm, and the Ra value from 0.11 μm 0.059 μm after 8 minutes. In the electrolytic polishing (no abrasive) under a load of 0.4 N and a current of 60 mA, the Rmax value decreased to 0.29 μm and the Ra value to 0.065 μm after 8 minutes.
The two-stage electrolytic abrasive polishing was conducted. In the first stage, the Rmax value decreased to 0.23 μm and the Ra value to 0.052 μm under a load of 0.4 N, the abrasive size of 1 μm, a current of 60 mA and the polishing time of 4 minutes. In the second stage, the Rmax value decreased to 0.16 μm and the Ra value to 0.029 μm using the abrasive size of 0.3 μm after 4 minutes. The polished surface achieved a bright and a smooth surface.
The electrolytic abrasive polishing with feeding was conducted. The Rmax value decreased to 0.17 ~ 0.19 μm and the Ra value to 0.037 ~ 0.041 μm under a load of 0.4 N, the abrasive size of 1 μm, a current of 60 mA and the polishing time of 24 minutes. The inner surface of the workpiece achieved a bright mirror.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 電化學加工演變 4
1.2.2 電解複合磨粒拋光法 9
1.2.3 電解液 14
1.2.4 導電高分子材料作為工具電極 14
1.2.5 磨粒 15
1.3 研究目的 17
第二章 實驗設備與實驗方法 18
2.1 電解複合磨粒方孔內表面拋光加工實驗設備及實驗方法 18
2.1.1 多軸運動式電解複合磨粒拋光機系統 18
2.1.2 工具電極之進給模組 20
2.1.3 工具電極旋轉與往復運動模組 20
2.1.4 工件之迴轉與施力模組 20
2.1.5 電壓電流供應系統 21
2.1.6 電解液循環系統 21
2.2 實驗資料量測設備 22
2.3 實驗材料之特性與幾何形狀 23
2.3.1 工件材料與幾何形狀 23
2.3.2 工件之量測治具 24
2.3.3 工具電極 26
2.3.4 工具電極幾何形狀 27
2.3.5 電解液的選擇 28
2.4 實驗材料之前處理方式 30
2.4.1 SKD61工件實驗前處理 30
2.4.2 工具電極前處理 31
2.5實驗流程 33
第三章 實驗結果與討論 36
3.1 純磨粒作用 37
3.1.1 加工時間的效應 38
3.1.2 往復速率 38
3.1.3 磨粒與負荷的效應 39
3.1.4 純磨粒加工機制 48
3.2 無磨粒純電解作用 49
3.2.1 電壓電流曲線 49
3.2.2 加工電流的效應 51
3.2.3 無磨粒純電解加工機制 56
3.2.4 加工電流對工件表面粗糙度的影響 57
3.3 電解複合磨粒作用 58
3.3.1 電解複合磨粒加工 58
3.3.2 電解複合磨粒拋光的表面粗糙度變化 62
3.3.3 兩階段不同粒徑之電解複合磨粒拋光 63
3.4 全表面拋光 68
3.4.1 電解複合磨粒進給拋光 68
3.4.2 工件全表面拋光成果圖 74
第四章 結果與未來研究方向 75
4.1 結論 75
4.2 未來研究方向 76
參考文獻 77
附錄-盲孔之底部加工 81
1.1實驗材料之特性與幾何形狀 81
1.1.1 工件材料與幾何形狀 81
1.1.2 工具電極幾何形狀 82
1.2 工件材料之前處理方式 83
1.3實驗流程 84
2.1純磨粒作用 86
2.1.1 轉速 87
2.1.2 加工時間效應 87
2.1.3 磨粒與負荷 88
2.1.4 純磨粒加工機制 91
2.2 無磨粒純電解作用 92
2.2.1 加工電流的效應 92
2.2.2 無磨粒純電解加工機制 96
2.3 全表面拋光 97
2.3.1 電解複合磨粒拋光 97
2.3.2 工件全表面拋光成果圖 99
[1]蔡芯穎, “使用導電高分子工具於電解複合研磨的鋼之表面特性研究”, 國立中山大學機械與機電工程學系碩士論文, (2011).
[2]李承佑, “電解擦光加工參數304不銹鋼表面粗糙度之影響”, 國立中山大學機械與機電工程學系碩士論文, (2012).
[3]J.A. McGeough, “Principles of electrochemical machining. ”, Chapman and Hall , (1974) pp. 1-10.
[4]魏展鴻, “使用導電高分子工具對不鏽鋼表面的電解擦光之研究”, 國立中山大學機械與機電工程學系碩士論文, (2013).
[5]杜致緯, “使用導電高分子工具電解複合磨粒拋光圓桿件之研究”, 國立中山大學機械與機電工程學系碩士論文, (2014).
[6]林逸城, “多軸運動式電解複合磨粒拋光機之研製以及不鏽鋼內孔拋光之研究”,國立中山大學機械與機電工程研究所碩士論文, (2015).
[7]李智弘, “使用導電高分子工具電解複合磨粒拋光模具鋼內孔面之研究”,國立中山大學機械與機電工程研究所碩士論文, (2016).
[8]冷繼國, “使用導電高分子工具電解複合磨粒拋光模具鋼盲孔之內表面之研究”,國立中山大學機械與機電工程研究所碩士論文, (2017).
[9]K.P. Rajurkar, J. Kozaka, B. Wei and J.A. McGeough, “Study of pulse electrochemical machining characteristics”, CIRP Annals-Manufacturing, Vol.5 , (1993) , pp. 231-234
[10]C.L. Faust, “Electro-polishing I: The practical side”, Metal Finishing, (1982) ,
pp. 21-25.
[11]C.L. Faust, “Electro-polishing II: The practical side”, Metal Finishing, (1982) ,
pp. 59-63.
[12]井上晴夫, “基礎化学コース. ” (2001)
[13]W.J. Tegart, “The Electrolytic and Chemical Polishing of Metals. ” (1959)
[14]E.-S. Lee “Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)”, The International Journal of Advanced Manufacturing Technology, Vol.16 ,(2000), pp. 591-599.
[15]J. Lee, Y.M. Lee and M.F. Du, “The polishing mechanism of electrochemical mechanical polishing technology”, Journal of Materials Processing Technology, Vol.140 ,(2003), p. 280-286.
[16]Y.J. Seo, “Electrochemical–mechanical polishing application: Monitoring of electrochemical copper removal from current–voltage characteristics in HNO3 electrolyte”, Microelectronic Engineering , Vol 88 ,(2011), p 46-52
[17]H. Hocheng, P.S. Kao and Y.F. Chen, “Electropolishing of 316L Stainless Steel for Anticorrosion Passivation”, Journal of Materials Engineering and Performance,
Vol. 10 ,(2001), pp. 414–418.
[18]S.J. Lee and J.J. Lai, “The effects of electropolishing(EP) process parameters on corrosion resistance of 316L stainless steel. Journal of Materials Processing Technology”, Vol.140 ,(2003),pp. 206-210.
[19]S. Habibzadeh, L. Li, D. Shum-Tim, E.C. Davis and S. Omanovic, “Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility”, Corrosion Science, Vol.87 ,(2014),pp. 89-100.
[20]T. Harada and K. Seimiya, “Electro-abrasive Polishing and its Application to the Manufacturing Process”, Journal of The Surface Finishing Society of Japan,
Vol. 61 ,(2010), pp. 309-314.
[21]前畑英彦, 釜田浩 和 山本昌彦, “電解複合鏡面加工の研究”, 精密機械, Vol. 51 ,(1985), No. 7, pp. 1420-1427.
[22]清宮紘一, “電解砥粒研磨による鋼材の精密鏡面仕上げ”, 鉄と鋼, Vol. 72 ,
(1986), No. 8, pp. 904-908.
[23]釜田浩, 木本保夫, 中川雅之 和 垣野義昭, “電解複合砥粒加工作用に関する研究 (第2報) ”, 電気加工学会誌, Vol. 23 ,(1989-1990), No. 45 , pp. 1-12
[24]馬場吉康 和 佐藤憲二, “電解複合研磨による金属の超鏡面化技術”, 表面科学, Vol.11 ,(1990), No.6 , pp. 368-374.
[25]清宮紘一 和 淺川慶一郎, “小径管内面の電解砥粒鏡面仕上げ”, 日本發明專利1995-094090, (1991).
[26]S. Okawa, A. Hossain, M. Kanatani, K. Watanabe and O. Miyakawa, “Surface properties of electrochemically buffed titanium casting”, Dental Materials Journal, Vol.23 ,(2004), pp. 504-511.
[27]Y. Wang, Y. Zhao and X. Lib, “Modeling the effects of abrasive size, surface oxidizer concentration and binding energy on chemical mechanical polishing at molecular scale”, Tribology International , Vol.41 ,(2008), pp. 202–210
[28]A. Iwabuchi, T. Tsukamoto, Y. Tatsuyanagi, N. Kawahara and T. Nonaka, “Electrochemical approach to die steel in Na2S04 solution”, Wear, Vol.156 ,(1992) , pp. 301-313.
[29]G.S. Frankel, “Pitting Corrosion of Metals A Review of the Critical Factors”, Journal of the Electrochemical Society, Vol. 145 ,(1998), pp. 2186-2198.
[30]J.R. Galvele and S. Begum, “Corrosion, Pitting”, Reference Module in Materials Science and Materials Engineering ,(2016).
[31]P. Marcus, V. Maurice and H.-H. Strehblow, “Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure”, Corrosion Science, Vol.50 ,(2008), pp. 2698-2704.
[32]H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang and A. J. Heeger, “Synthesis of electrically conducting polymers: Halogen derivatives of poly-acetylene, (CH)X”, Journal of The Chemical Society, Chemical Communications, Vol.16 ,(1977), pp. 578-580.
[33]A.C. Wang and S.H. Weng, “Developing the polymer abrasive gels in AFM process”, Journal of Materials Processing Technology, Vol.192 ,(2007),
pp. 486-490.
[34]A. Curodeau, L. F. Marceau, M. Richard and J. Kozaka, “New EDM polishing and texturing process with conductive polymer electrodes”, Journal of Materials Processing Technology, Vol.159 ,(2005), pp. 17-26.
[35]J. Larsen-Badse, “Some effects of specimen size on abrasive wear”, Wear,
Vol. 19 ,(1972), pp. 27-35
[36]M.R. Thakare, J.A. Wharton, R.J.K. Wood and C. Menger, “Effect of abrasive abrasive size and the influence of microstructure on the wear mechanisms in wear-resistant materials”, Wear , Vol. 276-277 ,(2012), pp. 202–210
[37]Y. Xie and B. Bhushan, “Effects of abrasive size, polishing pad and contact pressure in free abrasive polishing”, Wear, Vol. 200 ,(1996), pp. 281-295
[38]C.J. Evans, E. Paul, D. Dornfeld, D.A. Lucca, G. Byrne, M. Tricard, F. Klocke,
O. Dambon and B.A. Mullany, “Material Removal Mechanisms in Lapping and Polishing”, CIRP Annals, Vol. 52 ,(2003), pp. 611-633
[39]F. Hashimoto, H. Yamaguchi, P. Krajnik, K. Wegener, R. Chaudharia,H.-W. Hoffmeister and F. Kuster, “Abrasive fine-finishing technology”, CIRP Annals,
Vol. 65 ,(2016), pp. 597-620.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊