(3.236.175.108) 您好!臺灣時間:2021/02/27 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾冠毅
研究生(外文):Kuan-I Chung
論文名稱:非負矩陣分解之維度縮減法於螺絲鍛造力訊號分類之應用
論文名稱(外文):Dimension Reduction by Non-Negative Matrix Factorization: with Application in Screws'' Forging Force Signal Classification
指導教授:羅夢娜羅夢娜引用關係
指導教授(外文):Mong-Na Lo Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:函數型資料主成份分析聚類分析管制圖K-鄰近法
外文關鍵詞:K-nearest neighborsFPCAClusteringcontrol chart
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬分析螺絲鍛造力訊號資料,作為螺絲品質分類之依據。此處之訊號為非負實數之壓電反應值。非負矩陣分解法將給定的高維度非負矩陣,分解成非負的「訊號基底矩陣」與非負的「權重矩陣」。再以權重矩陣作為降維後之數據,進行分類與分群,並與其他降維方法比較。本研究針對舊產線與新產線提出不同分類方法,建立螺絲品質分類之準則。期能將此準則應用在生產線上,建構一螺絲品質即時監控系統,進而改善工廠製程之良率,降低生產成本。
This thesis investigates the problem of identification of the quality of screws through the data of screws'' forging force signals. For each sample, the signals are a sequence of non-negative voltage values generated by the piezoelectric effect. The non-negative matrix factorization decomposes a high dimensional non-negative matrix into a non-negative “signal bases matrix” and a “weights matrix”. The weights matrix is used as the dimensionally reduced data for further analysis such as classification and clustering. We compare its performance with other dimension reduction methodology. Moreover, in this work, we propose different classification methods for offline control with sufficient and insufficient prior data and establish the corresponding quality classification criterion. The offline control criterion with insufficient prior data can be applied to the production line to construct a screw quality real-time monitoring system, which can help to improve the yield rate of the production line and reduce the cost.
論文審定書 i

誌謝 iii

摘要 iv

Abstract v

1 Introduction p.1

2 Data Descriptions p.3
2.1 Data Generating System p.3
2.2 Experimental Data p.4
2.3 Real Data p.6

3 Methodology p.7
3.1 Non-negative Matrix Factorization (NMF) p.7
3.1.1 Notations and Assumption p.7
3.1.2 Measurement of Errors p.8
3.1.3 Gradient Descent p.8
3.1.4 Multiplicative Update (MU) Rule p.9
3.1.5 Pseudo Inverse Projection with Non-negative Constraint p.10
3.2 Regularizing Weights Matrix p.10
3.3 K-Nearest Neighbors Classification p.12
3.4 Density-based Spatial Clustering of Applications with Noise p.13
3.5 Other Dimension Reduction Methods p.16
3.5.1 Principal Component Analysis p.16
3.5.2 Functional Principal Component Analysis p.16

4 Analysis Procedure p.17
4.1 Analysis of Experimental Data p.17
4.2 Analysis of Real Data p.18
4.2.1 Offline Control with Sufficient Prior Data p.18
4.2.2 Offline Control with Insufficient Prior Data p.19

5 Empirical Study p.21
5.1 Experimental Analysis p.21
5.1.1 Dimension Reduction with the NMF p.21
5.1.2 Regularization of the Weight Matrix p.22
5.1.3 Pseudo Inverse Projection with Non-negative Constraint p.22
5.1.4 Regularization of the Weight Matrix with Testing Data p.23
5.1.5 K-Nearest Neighbors Classification p.23
5.1.6 Comparison with Other Methods with Cross Validation p.24
5.2 Offline Control with Sufficient Prior Data p.25
5.3 Offline Control with Insufficient Prior Data p.27

6 Conclusion and Future Work p.29
6.1 Conclusion p.29
6.2 FutureWork p.30

7 References p.32

A Appendix p.33
[1] Ding, C., He, X. and Simon, H.D. (2005). On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering. Proc. SIAM Int’l Conf. Data Mining, 606–610.

[2] Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). A density-based algorithm for discov- ering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. 226–231.

[3] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer, New York.

[4] Johnson, R.D. and Wichern, D.W. (2007). Applied Multivariate Statistical Analysis. Pear- son, Essex.

[5] Lee, D.D. and Seung, H.S. (1999). Learning the Parts of Objects by Nonnegative Matrix Factorization. Nature, 401, 788–791.

[6] Montgomery, D.C. (2012). Introduction to Statistical Quality Control, 7th Edition. John Wiley & Sons, New York.

[7] Ramsay,J.O.andSilverman,B.W.(2005).FunctionalDataAnalysis,2ndEdition.Springer, New York.
電子全文 電子全文(網際網路公開日期:20230712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔