[1] Cho, H., Goude, Y., Brossat, X. and Yao, Q. (2013). Modeling and forecasting daily elec- tricity load curves: A Hybrid Approach. Journal of the American Statistical Association, 108, 7-21.
[2] Fan, S. and Hyndman, R. J. (2012). Short-Term load forecasting based on a Semi- Parametric Additive Model. IEEE Transactions on Power Systems, 27, 134-141.
[3] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press.
[4] Schmidhuber, J. (2015). Deep Learning in Neural Networks: An overview. Neural net- works, 61, 85-117.
[5] Piegl, L., and Tiller, W. (2012). The NURBS book. Springer Science and Business Media.
[6] Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal ex-
ponential smoothing. Journal of the Operational Research Society, 54, 799-805.
[7] 徐朮(2016)。電力負載量之短期預測,國立中山大學應用數學系碩士論文。[8] 郭崧義(2017)。模型整合在短期負載預測的應用,國立中山大學應用數學系碩士論 文。[9] 董道廷(2017)。電力系統短期負載預測,國立中山大學電機工程學系碩士論文。