(3.235.41.241) 您好!臺灣時間:2021/04/21 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊皓軒
研究生(外文):Hao-syuan Yang
論文名稱:改質氧化石墨烯/氧化鋁管狀複合膜結合同步電混凝/電過濾去除二座廢(污)水處理廠進流水中三種主要無機鹽類之效能評估
論文名稱(外文):Performance Evaluation of Removing Three Major Inorganic Salts from Influents of Two Wastewater Treatment Plants by a Surface Modified Graphene Oxide/Al2O3 Tubular Composite Membrane Coupled with Electrocoagulation/Electrofiltration Process
指導教授:楊金鐘楊金鐘引用關係
指導教授(外文):Gordon C. C. Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:198
中文關鍵詞:電混凝無機鹽類新興污染物生活污水管狀複合膜電過濾氧化石墨烯
外文關鍵詞:municipal wastewateremerging contaminantsinorganic saltselectrocoagulationelectrofiltrationgraphene oxidetubular composite membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球經濟日益蓬勃的發展,各式各樣的人造化學物質進入了人類的生活當中,同時也帶來了環境危害的相關議題,其中,新興污染物即是熱門議題之一,而無機鹽類則是水中常見污染物之一,若任其排放至自然水體則會有二次污染之風險。因此,本研究首先針對台灣南部某都市生活污水廠進/放流水中關切的8種鄰苯二甲酸酯類與13種藥物類(包括:6種抗生素類及7種非抗生素類)進行長期性逐月濃度監測;以及針對台灣南部都市生活污水處理廠及南部某校園污水處理廠進/放流水中3種主要的無機鹽類(包括:PO43-、SO42-及NO3-)進行密集性短時間濃度監測。結果顯示,在南部某都市生活污水處理廠進流水中,8種關切的鄰苯二甲酸酯類以鄰苯二甲酸二丁酯(DnBP)、鄰苯二甲酸二辛酯(DEHP)及鄰苯二甲酸二異壬酯(DiNP)為最常被檢出之化合物,而13種藥物類則以咖啡因(Caffeine)、乙醯胺酚(Acetaminophen)、先鋒黴素(Cefalexin)及磺胺甲噁唑(Sulfamethoxazole)最常被檢出,且上述6個化合物於進流水中之檢出濃度數百至數千ng/L,甚至是數十µg/L;另一方面,二座污水處理廠進流水中3種主要無機鹽類之檢出濃度介於數十至數千mg/L,其中,二座污水處理廠對於SO42-的去除能力有限,且該校園污水處理廠放流水中PO43-之殘留濃度高於放流水標準。
接著,本研究利用自行製備之改質氧化石墨烯/氧化鋁管狀複合膜結合同步電混凝/電過濾探討其對於水溶液中3種關切無機鹽類之去除效能,首先針對含有3種主要無機鹽類之模擬水樣進行不同參數影響去除率的探討,試驗結果顯示,在不同的pH(3、6及10)及電場強度(0 – 40 V/cm)下,以鋁作為犧牲性陽極對模擬水樣中PO43-、SO42-及NO3-之去除率皆比以鐵作為犧牲性陽極的組別佳,因此,後續實驗選定以鋁作為犧牲性陽極處理實際生活污水,針對選定之都市生活污水處理廠及校園污水處理廠,試驗結果顯示,分別在透膜壓差2.94 bar、掃流速度1.67 cm/s及電場強度 40 V/cm及透膜壓差2.94 bar、掃流速度1.67 cm/s及電場強度 30 V/cm之操作條件有最佳的去除成效,PO43-、SO42-及NO3-之去除率分別為98.3 – 99.2%、99.1 – 99.4%及96.1 – 98.6%。而在釋鋁量評估方面,比較不同電場強度下無機鹽類去除率與釋鋁量之關係,可得知電場強度與釋鋁量成正比,且無機鹽類的去除率在臨界電場強度時會達到一最佳的去除效果。最後,與其他使用電混凝技術處理無機鹽類之相關文獻比較得知,EC/EF程序無須在較高的電流密度下即可達到良好的去除效果,具技術可行性。
The first objective of this study was to investigate the occurrence and removal efficiencies of eight phthalate esters and 13 pharmaceuticals(including six antibiotics and seven non-antibiotics)present in the influent and effluent of a selected municipal wastewater treatment plant (MWWTP)in southern Taiwan. A similar investigation was also conducted for three major inorganic salts (including PO43-, SO42- and NO3-)present in the influent and effluent of the said MWWTP and a selected campus wastewater treatment plant(CWWTP)in southern Taiwan. The monitoring results of influent of MWWTP showed that di-n-buty phthalate(DnBP), di-(2-ethylhexyl) phthalate(DEHP), and di-iso-nonyl phthalates(DiNP) were detected at relatively higher concentration and frequency in phthalates of concern. Also, caffeine, acetaminophen, cephalexin, and sulfamethoxazole were detected at relatively higher concentration and frequency. The concentrations of the aforementioned seven contaminants ranged from hundreds ng/L up to μg/L; the monitoring results of three major inorganic salts in influents of two selected WWTPs showed that the concertrations of three major inorganic salts ranged from dozens mg/L up to thousands mg/L. Meanwhile, the removal ability of SO42- in these two selected WWTPs is limited, and the concentration of PO43- from effluent of CWWTP is above the relevant effluent standard.
The second objective in this study was to evaluate the performance of the laboratory-prepared surface modified graphene oxide/alumina tubular composite membrane coupled with the simultaneous electrocoagulation/electrofiltration (EC/EF)process for the removal of three target inorganic salts in various aqueous solutions. For model solution containing the said three target inorganic salts, the operating parameters studied were electric field strength, pH, and anode material. As compared with iron anode, test results showed that aluminum as the aonde material yielded a better treatment performance for PO43-, SO42- and NO3- in model solution. Therefore, aluminum as the anode material was selected in later experiments for actual influents collected from two selected WWTPs.
Test results showed that the corresponding optimal conditions were 2.94 bar, 1.67 cm/s, 40 V/cm for the selected MWWTP, and 2.94 bar, 1.67 cm/s, and 30 V/cm for selected CWWTP. It was also determined that the removal efficiencies of PO43-, SO42- and NO3- for the selected MWWTP and CWWTP were 98.3–99.2%、99.1–99.4%及 96.1–98.6%, respectively. In this work, the relationship between the quantity of released Al and the removal efficiencies of the three target inorganic salts under different electric field strengths was also investigated. The results showed that the quantity of released Al and electric field strength were in direct proportion, and the optimal removal efficiencies of the three target inorganic salts was obtained under the critical electric field strength. As compared with electrocoagulation treatment results for inorganic salts reported by others, the application of EC/EF process has several additional advantages because it can be operated at a lower current density to yield a higher treatment efficiency in a short time.
論文審定書 i
謝誌 ii
摘要 iii
Abstrcat v
目錄 vii
圖目錄 xiii
表目錄 xviii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究內容 4
第二章 文獻回顧 9
2.1磷酸鹽 9
2.1.1磷酸鹽來源及影響 9
2.1.2磷酸鹽處理技術 11
2.2硫酸鹽 . 12
2.2.1硫酸鹽來源及影響 12
2.2.2硫酸鹽處理技術 13
2.3硝酸鹽 15
2.3.1硝酸鹽來源及影響 15
2.3.2硝酸鹽處理技術 17
2.4氧化石墨烯 19
2.4.1氧化石墨烯之製備方法 19
2.4.2 氧化石墨烯之特性及應用 20
2.5薄膜處理程序 23
2.5.1薄膜定義與特性 23
2.5.2薄膜分離程序 24
2.5.3薄膜組件之形式 26
2.5.4薄膜材質 27
2.6電混凝/電過濾處理程序 31
2.6.1電混凝理論 31
2.6.2掃流電過濾 36
2.6.3同步電混電混凝 電過濾程序 38
第三章 實驗材料、設備與方法 41
3.1 實驗材料 41
3.1.1 水樣來源 41
3.1.2 材料與試劑 42
3.2 實驗設備 45
3.2.1 化學氣相沉積設備 45
3.2.2 蒸氣壓氣體滲透偵測裝置 46
3.2.3 同步電混凝/電過濾模組處理系統 46
3.2.4 其他設備及儀器 47
3.3 實驗方法 50
3.3.1改質氧化石墨烯之製備 50
3.3.1.1氧化石墨烯XRD分析 51
3.3.2改質化石墨烯/氧化鋁管狀複合膜之製備 51
3.3.3含關切的無機鹽類之模擬水樣配製 52
3.3.4 同步電混凝/電過濾處理系統之操作 53
3.3.5濾液通量及去除率計算 54
3.3.6電極釋鋁量評估 54
3.3.7水樣及濾液品質分析方法 55
第四章 結果與討論 59
4.1兩個不同來源之廢 (污)水處理廠之進 /放流水中無機鹽類及新興污染物濃度調查及探討 59
4.2南部某都市生活污水處理廠之進/放流水中關切的新興污染物濃度調查及探討 60
4.2.1關切的鄰苯二甲酸酯類濃度分布 60
4.2.2關切的 非抗生素藥物類濃度分布 62
4.2.3關切的抗生素類藥物濃度分布 64
4.3進/放流水中關切的無機鹽類濃度調查及探討 67
4.3.1南部某都市生活污水處理廠 67
4.3.2南部某校園污水處理廠 68
4.4綜合探討 69
4.5氧化石墨烯之特性分析 73
4.6改質氧化石墨烯/氧化鋁管狀複合膜之特性分析 78
4.6.1改質氧化石墨烯 /氧化鋁管狀複合膜表面及橫截之顯微結構及特性分析 78
4.6.2 改質氧化石墨烯 /氧化鋁管狀複合膜孔徑分布 81
4.7改質氧化石墨烯 /氧化鋁管狀複合膜結同步電混凝/電過濾處理模擬水樣中無機鹽類之效能評估 83
4.7.1不同電場強度及極材質之影響 83
4.7.1.1以鋁作為陽極且在不同電場強度對於濾液通量之影響 83
4.7.1.2以鋁作為陽極且在不同電場強度對於濾液品質之影響 87
4.7.1.3以鐵作為陽極且在不同電場強度對於濾液通量之影響 89
4.7.1.4以鐵作為陽極且在不同電場強度對於濾液品質之影響 90
4.7.2不同 pH及不同電極材質之影響 92
4.7.2.1以鋁作為陽極且在不同pH值對於濾液通量之影響 92
4.7.2.2以鋁作為陽極且在不同pH值對於濾液品質之影響 93
4.7.2.3以鐵作為陽極且在不同pH值對於濾液通量之影響 97
4.7.2.4以鐵作為陽極且在不同pH值對於濾液品質之影響 99
4.7.3最佳操作條件對模擬水樣之處理成效 101
4.8改質氧化石墨烯/氧化鋁管狀複合膜結同步電混凝 /電過濾處 理兩個不同來源之廢(污)水中無機鹽類效能評估 102
4.8.1南部某都市生活污水處理廠之進流水 102
4.8.1.1電場強度對於濾液通量之影響 102
4.8.1.2電場強度對於濾液品質之影響 106
4.8.2南部某校園污水處理廠之進流水109
4.8.2.1電場強度對於濾液通量之影響 109
4.8.2.2電場強度對於濾液品質之影響 110
4.8.3最佳操作條件對該都市生活污水處理廠進流水及該校園污水處理廠進流水之成效 113
4.9電極釋鋁量及混凝效應之評估 115
4.10 EC/EF程序與污水廠現有設備之處理效能比較 122
4.11技術可行性評估 122
第五章 結論與建議 125
5.1 結論 125
5.2 建議 128
參考文獻 129
附錄 155
碩士在學期間發表之術論文 177
中文部分:
行政院環保署環境檢驗所,「水中氫離子濃度指數測定方法-電極法」,NIEA W424.52A(2009)。
行政院環保署環境檢驗所,「水中硫酸鹽檢測方法-濁度法」,NIEA W430.51C(2001)。
行政院環保署環境檢驗所,「水中陰離子檢測方法-離子層析法」,NIEA W415.53B(2016)。
行政院環保署環境檢驗所,「水中導電度測定方法-導電度計法」,NIEA W203.51B(2001)。
行政院環保署環境檢驗所,「水中濁度檢測方法-濁度計法」,NIEA W219.52C(2005)。
行政院環保署環境檢驗所,「水中磷檢測方法-分光光度計/維生素丙法」,NIEA W427.53B(2010)。
李中光、李柏宏、劉新校、邱惠敏,“淺談含高濃度硫酸鹽廢水之處理技術:(二) 生物脫硫法”,桃園市大學校院產業環保技術服務團,第 33 期環保簡訊(2016)。
沈宛瑩,“新穎電薄膜程序處理生活污水中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2013)。
周宗享,“同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水溶液中之環境荷爾蒙及藥物”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
洪文強,“以硝酸鋁/二氧化矽改質Fe3O4以吸附水溶液中磷酸鹽”,碩士學位論文,國立宜蘭大學環境工程學系,宜蘭縣,(2011)。
莊智琄,“利用同步電混凝/電過濾程序處理含奈米級TiO2之有機廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2004)。
陳岱柏,“電化學處理反應系統促進硝酸鹽污染物去除效率之研究”,碩士學位論文,朝陽科技大學環境工程與管理系,台中市,(2004)。
陳盈君,“含石墨烯/氧化鋁管狀複合膜結合同步電混凝/電過濾程序去除不同水體中新興污染物效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2017)。
陳富政,“利用電混凝/電過濾技術於廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2003)。
湯佩玲,“利用石墨烯奈米材料吸附程序及同步電混凝/電過濾程序去除生活污水中關切的新興污染物”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2015)。
童國倫、李雨霖、呂明洋、賴君義,“膜過濾模組之簡介及其設計”,臺灣化學工程學會,第52卷,第1期,第31-46頁(2005)。
黃英豪,“生活污水中鄰苯二甲酸酯類與藥物:監測及新穎電薄膜處理”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2014)。
楊士弘,“利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中砷及過氯酸鹽”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2011)。
蔡啟明,“新穎管狀碳質/陶瓷複合膜製備其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市(2008)。
鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2003)。
賴志敏,“利用兩種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區兩種放流水及晶背研磨廢水之可行性研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2010)。
鍾佳琪,“以垂直流式人工溼地處理含硫酸鹽廢水之研究”,碩士學位論文,國立中山大學海洋環境及工程學系研究所,高雄市 (2010)。
顏嘉亨,“同步電混凝/電過濾程序結合自製管狀碳質/陶瓷複合膜去除水中關切的新興污染物”,博士學位論文,國立中山大學環境工程研究所,高雄市(2014)。
顏嘉亨,“多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2008)。

英文部分:
Aba, N. F. D., J. Y. Chong, B. Wang, C. Mattevi, and K. Li, “Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance,” Journal of Membrane Science, Vol. 484, pp. 87-94(2015).
Ali, M. E. A., L. Wang, X. Wang, and X. Feng, “Thin film composite membranes embedded with graphene oxide for water desalination,” Desalination, Vol. 386, pp. 67-76(2016).
Amaral, F. M., M. T. Kato, L. Florêncio, and S. Gavazza, “Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes,” Bioresource Technology, Vol. 163, pp. 364-369(2014).
Ambashta, R. D. and M. E. T. Sillanpää, “Membrane purification in radioactive waste management: A short review,” Journal of Environmental Radioactivity, Vol. 105, pp. 76-84(2012).
Apul, O. G., Q. Wang, Y. Zhou, and T. Karanfil, “Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon,” Water Research, Vol. 47, pp. 1648-1654(2013).
Attour, A., M. Touati, M. Tlili, M. Ben-Amor, F. Lapicque, and J. P. Leclerc, “Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes,” Separation and Purification Technology, Vol. 123, pp. 124-129(2014).
Ballantine, K. A., P. M. Groffman, J. Lehmann, and R. L. Schneider, “Stimulating Nitrate Removal Processes of Restored Wetlands, Environmental Science and Technology, Vol. 48, pp. 7365-7373(2014).
Bazrafshan, E., L. Mohammadi, A. Ansari-Moghaddam, and A. H. Mahvi, “Heavy metals removal from aqueous environments by electrocoagulation processe: A systematic review,” Journal of Environmental Health Science and Engineering, Vol. 13, pp. 1-16(2015).
Behbahani, M., M. R. A. Moghaddam, and M. Arami, “A comparison between aluminum and iron electrodes on removal of phosphate from aqueous solutions by electrocoagulation process,” International Journal of Environmental Research, Vol. 5, pp. 403-412(2011).
Behera, S. K., H. W. Kim, J. E. Oh, and H. S. Park, “Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea,” Science of the Total Environment, Vol. 409, pp. 4351-4360(2011).
Bektas, N., H. Akbulut, H. Inan, and A. Dimoglo, “Removal of phosphate from aqueous solutions by electro-coagulation,” Journal of Hazardous Materials, Vol. 106, pp. 101-105(2004).
Benammar, L., T. Menasria, A. Ayachi, and M. Benounis, “Phosphate removal using aerobic bacterial consortium and pure cultures isolated from activated sludge,” Process Safety and Environmental Protection, Vol. 95, pp. 237-246(2015).
Benatti, C. T., C. R. G. Tavares, and E. Lenzi, “Sulfate removal from waste chemicals by precipitation,” Journal of Environmental Management, Vol. 90, pp. 504-511(2009).
Benhadji, A., M. Taleb-Ahmed, and R. Maachi, “Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba,” Desalination, Vol. 277, pp. 128-134(2011).
Bhave, R. R., “Inorganic membranes: Synthesis, characteristics and applications,” Van Nostrand Rehinhold, New York, U.S.A.(1991).
Bhowmik, K., S. Pramanik, S. K. Medda, and G. De, “Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass,” Journal of Materials Chemistry, Vol. 22, pp. 24690-24697(2012).
Bilgili, M. S., M. Ince, G. T. Tari, E. Adar, V. Balahorli, and S. Yildiz, “Batch and continuous treatability of oily reception facilities: A pilot scale study,” Journal of Electroanalytical Chemistry, Vol. 760, pp. 119-126(2016).
Brodie, B. C., “On the atomic weight of graphite,” Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259(1859).
Bunani, S., E. Yörükoğlu, Ü. Yüksel, N. Kabay, M. Yüksel, and G. Sert, “Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation,” Desalination, Vol. 354, pp. 68-74(2015).
Burggraaf, A. J., K. Keizer, and B. A. V. Hassel, “Ceramic nanostructure materials, membranes and composite layers,” Solid State Ionics, Vol. 32-33(Part 2), pp. 771-782(1989).
Camargo, J. A. and Á. Alonso, “Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment,” Environment International, Vol. 32, pp. 831-849(2006).
Cañizares, P., M. Carmona, J. Lobato, F. Martínez, and M. A. Rodrigo,“Electrodissolution of aluminum electrodes in electrocoagulation processes,”Industrial & Engineering Chemistry Research, Vol. 44, pp. 4178-4185(2005).
Chang, H., Z. Sun, K. Y. F. Ho, X. Tao, F. Yan, W. M. Kwok, and Z. Zheng, “A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure,” Nanoscale, Vol. 3, pp. 258-264(2011).
Chang, J. J., Y. F. Lu, J. Q. Chen, X. Y. Wang, T. Luo, and H. Liu, “Simultaneous removals of nitrate and sulfate and the adverse effects of gravel-based biofilters with flower straws added as exogenous carbon source,” Ecological Engineering, Vol. 95, pp. 189-197(2016).
Charcosset, C., “Preparation of emulsions and particles by membrane emulsification for the food processing industry,” Journal of Food Engineering, Vol. 92, pp. 241-249(2009).
Chen, J., B. Yao, C. Li, and G. Shi, “An improved Hummers method for eco-friendly synthesis of graphene oxide,” Carbon, Vol. 64, pp. 225-229(2013).
Chen, S., L. Brown, M. Levendorf, W. Cai, S. Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, “Oxidation resistance of graphene coated Cu and Cu/Ni alloy, ” Journal of the American Chemical Society, Vol. 5, pp. 1321-1327(2011).
Chen, S., Y. Shi, W. Wang, Z. Li, J. Gao, K. Bao, R. Han, and R. Zhang, “Phosphorus removal from continuous phosphate-contaminated water by electrocoagulation using aluminum and iron plates alternately as electrodes,” Separation Science and Technology, Vol. 49, pp. 939-945(2014).
Choi, Y. S., S. W. Hong, S. J. Kim, and I. H. Chung, “Development of a biological process for livestock wastewater treatment using a technique for predominant outgrowth of Bacillus species,” Water Science & Technology, Vol. 45, pp. 71-78(2002).
Costa, A. R. and M. N. de Pinho, “Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions,” Journal of Membrane Science, Vol. 255, pp, 49-56(2005).
Cuperous, F. P. and H. H. Nijhuis, “Application of membrane technology to food processing,” Trends in Food Science and Technology, Vol. 7, pp. 277-282(1993).
Dargnat, C., M. J. Teil, M. Chevreuil, and M. Blanchard, “Phthalate removal throughout wastewater treatment plant: case study of Marne aval station(France),” Science of the Total Environment, Vol. 407, pp. 1235–1244(2009).
Demirbas, E. and M. Kobya, “Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes,” Process Safety and Environmental Protection, Vol. 105, pp. 79-90(2017).
Desmidt, E., K. Ghyselbrecht, Y. Zhang, L. Pinoy, B. Van Der Bruggen, W. Verstraete, K. Rabaey, and B. Meesschaert, “Global phosphorus scarcity and full-scale P-recovery techniques: A review,” Environmental Science and Technology, Vol. 45, pp. 336-384(2015).
Dolar, D., A. Vuković, D. Ašperger, and K. Košutić, “Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes,” Journal of Environmental Sciences, Vol. 23, pp. 1299-1307(2011).
Elabbas, S., N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M. N. Pons, F. Lapicque, and J. P. Leclerc, “Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode,” Journal of Hazardous Materials, Vol. 319, pp. 69-77(2016).
Eliaz, N., W. Kopelovitch, L. Burstein, E. Kobayashi, and T. Hanawa, “Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis,” Journal of Biomedical Materials Research, Vol. 89, pp. 270-280(2008).
El-Naas, M. H., S. Al-Zuhair, A. Al-Lobaney, and S. Makhlouf, “Assessment of electrocoagulation for the treatment of petroleum refinery wastewater,” Journal of Environmental Management, Vol. 91, pp. 180-185(2009).
Emamjomeh, M. M. and M. Sivakumar, “Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes,” Journal of Environmental Management, Vol. 90, pp. 1663-1679(2009).
Eng, A. Y. S., C. K. Chua, and M. Pumera, “Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications,” Physical Chemistry Chemical Physics, Vol. 18, pp. 9673-9681(2016).
EPA, U. S. “Human health risk assessment protocol. multimedia planning and permitting division,” Center for Combustion Science and Engineering(2012).
Fane, A. G., R. Wang, and M. X. Hu, “Synthetic membranes for water purification: Status and future,” Angewandte Chemie, Vol. 54, pp. 3368-3386(2015).
Feng, B., K. Xu, and A. Huang, “Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination,” Desalination, Vol. 394, pp. 123-130(2016).
Gani, K. M., A. Rajpal, and A. A. Kazmi, “Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems,” Environmental Science: Processes & Impacts, Vol. 18, pp. 406-416(2016).
Gao, J., “Membrane separation technology for wastewater treatment and its study progress and development trend,” 4th International Conference on Mechanical Materials and Manufacturing Engineering, pp. 630-633(2016).
Gao, S., Z. Zhao, Y. Xu, J. Tian, H. Qi, W. Lin, and F. Cui, “Oxidation of Sulfamethoxazole(SMX)by chlorine, ozone and permanganate—A comparative study,” Journal of Hazardous Materials, Vol. 274, pp. 258–269(2014).
Ghanbari, F., M. Moradi, A. Mohseni-Bandpei, F. Gohari, T. M. Abkenar, and E. Aghayani, “Simultaneous application of iron and aluminum anodes for nitrate removal: a comprehensive parametric study,” International Journal of Environmental Science and Technology, Vol. 11, pp. 1653-1660(2014).
Ghanim, A. N. and S. K. Ajjam, “Kinetic modelling of nitrate removal from aqueous solution during electrocoagulation,” Civil and Environmental Research, Vol. 3, pp. 64-73(2013).
Gharib, A., L. V. Fard, N. N. Pesyan, and M. Roshani, “A new application of nano-graphene oxide (NGO) as a heterogeneous catalyst in oxidation of alcohols types,” Chemistry Journal, Vol. 1, pp. 151-158(2015).
Golder, A. K., A. N. Samanta, and S. Ray, “Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation,” Separation and Purification Technology, Vol. 52, pp. 102-109(2006).
González, J. A., M. E. Villanueva, L. L. Piehl, and G. J. Copello, “Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study,” Chemical Engineering Journal, Vol. 280, pp. 41-48(2015).
Govindan, K., M. Noel, and R. Mohan, “Removal of nitrate ion from water by electrochemical approaches,” Journal of Water Process Engineering, Vol. 6, pp. 58-63(2015).
Guerra, P., M. Kim, A. Shah, M. Alaee, and S. A. Smyth, “Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes,” Science of the Total Environment, Vol. 473-474, pp. 235-243(2014).
Guerrero-Contreras, J. and F. Caballero-Briones, “Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method,” Materials Chemistry and Physics, Vol. 153, pp. 209-220(2015).
Hakizimana, J. N., B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, and J. Naja, “Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches,” Desalination, Vol. 404, pp. 1-21(2017).
Hirota, R., A. Kuroda, J. Kato, and H. Ohtake, “Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses,” Journal of Bioscience and Bioengineering, Vol. 109, pp. 423-432(2010).
Hossini, H. and A. Rezaee, “Optimization of nitrate reduction by electrocoagulation using response surface methodology,” Health Scope, Vol. 3, pp. 1-6(2014).
Hu, B., Q. Hu, X. Li, H. Pan, X. Tang, C. Chen, and C. Huang, “Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide,” Journal of Molecular Liquids, Vol. 229, pp. 6-14(2017).
Huang, J., L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, and Z. Zhang, “Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis,” Nanoscale, Vol. 2, pp. 2733-2738(2010).
Hummers Jr., W. S. and R. E. Offeman, “Preparation of graphitic oxide,” Baroid Division National Lead Company, pp. 1339(1958).
Hung, W. S., C. H. Tsou, M. D. Guzman, Q. F. An, Y. L. Liu, Y. M. Zhang, C. C. Hu, K. R. Lee, and J. Y. Lai, “Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d‑spacing,” Chemistry of Materials, Vol. 26, pp. 2983-2990(2014).
Huotari, H. M., G. Tragardh, and I. H. Huisman, “Crossflow membrane filtration enhanced by an external DC electric field: A review,” Chemical Engineering Research and Design, Vol. 77, pp. 461-468 (1999).
IARC, “Some chemicals present in industrial and consumer products, food and drinking water,” International Agency for Research on Cancer, France(2012).
Ilame, S. A. and S. V. Singh, “Application of membrane separation in fruit and vegetable juice processing: A review,” Food Science and Nutrition, Vol. 55, pp. 964-987(2015).
Janpoor, F., A. Torabian, and V. Khatibikamal, “Treatment of laundry waste-water by electrocoagulation,” Journal of Chemical Technology and Biotechnology, Vol. 86, pp. 1113-1120(2011).
Jiang, T., W. Liu, Y. Mao, L. Zhang, J. Cheng, M. Gong, H. Zhao, L. Dai, S. Zhang, and Q. Zhao, “Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite,” Chemical Engineering Journal, Vol. 259, pp. 603-610(2015).
Jiménez, C., C. Sáez, F. Martínez, P. Cañizares, and M. A. Rodrigo, “Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electrocoagulation processes,” Separation and Purification Technology, Vol. 98, pp. 102-108(2012).
Jo, E. Y., S. M. Park, I. S. Yeo, J. D. Cha, J. Y. Lee, Y. H. Kim, T. K. Lee, and C. G. Park, “A study on the removal of sulfate and nitrate from the wet scrubber wastewater using electrocoagulation,” Desalination and Water Treatment, Vol. 57, pp. 7833-7840(2016).
Kang, G. D. and Y. M. Cao, “Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review,” Journal of Membrane Science, Vol. 463, pp. 145-165(2014).
Karnik, B. S., S. H. R. Davies, K. C. Chen, D. R. Jaglowski, M. J. Baumann, and S. J. Masten, “Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes,” Water Research, Vol. 39, pp. 728-734(2005).
Kim, J., L. J. Cote, and J. Huang, “Two dimensional soft material: New faces of graphene xxide,” Accounts of Chemical Research, Vol. 45, pp. 1356-1364(2012).
Kobya, M., E. Demirbas, A. Dedeli, and M. T. Sensoy, “Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes,” Journal of Hazardous Materials, Vol. 173, pp. 326-334(2010).
Kolics, A., J. C. Polkinghorne, and A. Wieckowsk, “Adsorption of sulfate and chloride ions on aluminum,” Electrochimica Acta, Vol. 43, pp. 2605-2618(1998).
Koparal, A. S. and Ű. B. Őğűtveren, “Removal of nitrate from water by electroreduction and electrocoagulation,” Journal of Hazardous Materials, Vol. 89, pp. 83-94(2002).
Kuang, L., Y. Liu, D. Fu, and Y. Zhao, “FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism,” Journal of Colloid and Interface Science, Vol. 490, pp. 259-269(2017).
Kumar, N. S. and S. Goel, “Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process,” Journal of Hazardous Materials, Vol. 173, pp. 528-533(2010).
Kuokkanen, V., T. Kuokkanen, J. Rämö, U. Lassi, and J. Roininen, “Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes-techno-economic studies,” Journal of Water Process Engineering, Vol. 8, pp. 50-57(2015).
Lai, G.S., W. J. Lau, P. S. Goh, A. F. Ismail, N. Yusof, and Y. H. Tan, “Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance,” Desalination, Vol. 387, pp. 14-24(2016).
Lakshmanan, D., D. A. Clifford, and G. Samanta, “Ferrous and ferric ion generation during iron electrocoagulation,” Environmental Science and Technology, Vol. 43, pp. 3853-3859(2009).
Li, J., S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li, and X. Wang, “Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles,” ACS Applied Materials and Interfaces, Vol. 4, pp. 4991-5000(2012).
Liang, F., Y. Xiao, and F. Zhao, “Effect of pH on sulfate removal from wastewater using a bioelectrochemical system,” Chemical Engineering Journal, Vol. 218, pp. 147-153(2013).
Lin, B. L., A. Sakoda, R. Shibasaki, N. Goto, and M. Suzuki, “Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems,” Ecological Modelling, Vol. 135, pp. 89-110(2010).
Linares-Hernández, I., C. Barrera-Díaz, G. Roa-Moralesa, B. Bilyeu, and F. Ureña-Núñez, “Influence of the anodic material on electrocoagulation performance,” Chemical Engineering Journal, Vol. 148, pp. 97-105(2009).
Liu, J., L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomaterialia, Vol. 9, pp. 9243-9257(2013).
Lu, G.Q., J.C. D. da Costa, M. Duke, S. Giessler, R. Socolow, R. H. Williams, and T. Kreutz, “Inorganic membranes for hydrogen production and purification: A critical review and perspective,” Journal of Colloid and Interface Science, Vol. 314, pp. 589-603(2007).
Lu, N. C., and J. C. Liu, “Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process,” Separation and Purification Technology, Vol. 74, pp. 329-335(2010).
Madadrang, C. J., H. Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M. L. Kasner, and S. Hou, “Adsorption behavior of EDTA-graphene oxide for Pb (II) removal,” ACS Applied Materials and Interfaces, Vol. 4, pp. 1186-1193(2012).
Majlesi, M., S. M. Mohseny, M. Sardar, S. Golmohammadi, and A. Sheikhmohammadi, “Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes,” Sustainable Environment Research, Vol. 26, pp. 287-290(2016).
Mandel, K., A. Drenkova-Tuhtan, F. Hutter, C. Gellermann, H. Steinmetz, and G. Sextl, “Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water,” Journal of Materials Chemistry, Vol. 1, pp. 1840-1848(2013).
Mansouri, K., K. Ibrik, N. Bensalah, and A. Abdel-Wahab, “Anodic dissolution of pure aluminum during electrocoagulation process: Influence of supporting electrolyte, initial pH, and current density,” Industrial and Engineering Chemistry Research, Vol. 50, pp. 13362-13372(2011).
Michael, I., L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, “Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review,” Water Research, Vol. 47, pp. 957-995(2013).
Mollah, M. Y. A., P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cock, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, Vol. 114, pp. 199-210(2004).
Moussa, D. T., M. H. El-Naas, M. Nasser, and M. J. Al-Marri, “A comprehensive review of electrocoagulation for water treatment: Potentials and challenges,” Journal of Environmental Management, Vol. 186, pp. 24-41(2017).
Murugananthan, M., G. B. Raju, and S. Prabhakar, “Removal of sulfide, sulfate and sulfite ions by electrocoagulation,” Journal of Hazardous Materials, Vol. 109, pp. 37-44(2004).
Nan, Q., P. Li, and B. Cao, “Fabrication of positively charged nanofiltration membrane via thelayer-by-layer assembly of graphene oxide and polyethylenimine for desalination,” Applied Surface Science, Vol. 387, pp. 521-528(2016).
Nariyan, E., M. Sillanpää, and C. Wolkersdorfer, “Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies,” Separation and Purification Technology, Vol. 177, pp. 363-373(2017).
Ng, L. Y., A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination, Vol. 308, pp. 15-33(2013).
Othman, I., and M. S. Al-Masri, “Impact of phosphate industry on the environment: A case study,” Applied Radiation and Isotopes, Vol. 65, pp. 131-141(2007).
Ozyonar, F. and B. Karagozoglu, “Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes,” Polish Journal of Environmental Studies, Vol. 20, pp. 173-179(2011).
Padaki, M., R. S. Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal, and A. F. Ismail, “Membrane technology enhancement in oil–water separation. A review,” Desalination, Vol. 357, pp. 197-207(2015).
Pak, K. S., “Factors influencing treatment of nitrate contaminated water using batch electrocoagulation process,” International Journal of Current Engineering and Technology, Vol. 5, pp. 714-718(2015).
Papageorgiou, M., C. Kosma, and D. Lambropoulou, “Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece,” Science of the Total Environment, Vol. 543, pp. 547-569(2016).
Park, J. H., S. H. Kim, R. D. Delaune, J. S. Cho, J. S. Heo, Y. S. Ok, and D. C. Seo, “Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations,” Agricultural Water Management, Vol. 162, pp. 1-14(2015).
Pirsaheb, M., T. Khosravi, K. Sharafi, and M. Mouradi, “Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad,” Desalination and Water Treatment, Vol. 57, pp. 5391-5397(2016).
Pourhashem, S., A. Rashidi, M. R. Vaezi, and M. R. Bagherzadeh, “Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide,” Surface & Coatings Technology, Vol. 317, pp. 1-9(2017).
Regula, C., E. Carretier, Y. Wyart, G. Gĕsan-Guiziou, A. Vincent, D. Boudot, and P. Moulin, “Chemical cleaning/disinfection and ageing of organic UF membranes: A review,” Water Research, Vol. 56, pp. 325-365(2014).
Richards, L. A., B. S. Richards, and A. I. Schäfer, “Renewable Energy Powered Membrane Technology: Salt and Inorganic Contaminant Removal by Nanofiltration/Reverse Osmosis,” Journal of Membrane Science, Vol. 369, pp. 188-195(2011).
Ricordel, C. and H. Djelal, “Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: System performances and sludge settling characteristics,” Journal of Environmental Chemical Engineering, Vol. 2, pp. 1551-1557 (2014).
Rippeger, S. and J. Altmann, “Crossflow microfiltration – state of the art,” Separation and Purification Technology, Vol. 26, pp. 19-31(2002).
Robati, D., B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, and V. K. Gupta, “Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase,” Chemical Engineering Journal, Vol. 284, pp. 687-697(2016).
Rosal, R., A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agűera, and A. R. Fernández-Alba, “Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation,” Water Research, Vol. 44, pp. 578–588(2010).
Rostamian, R. and H. Behnejad, “A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling,” Process Safety and Environmental Protection, Vol. 102, pp. 20-29(2016).
Safarpour, M., V. Vatanpour, A. Khataee, and M. Esmaeili, “Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2,” Separation and Purification Technology, Vol. 154, pp. 96-107(2015).
Sahu, O., B. Mazumdar, and P. K. Chaudhari, “Treatment of wastewater by electrocoagulation: A review,” Environmental Science and Pollution Research, Vol. 21, pp. 2397-2413(2014).
Salminen, J. M., S. J. Petäjäjärvi, S. M. Tuominen, and T. H. Nystén, “Ethanol-based in situ bioremediation of acidified, nitrate-contaminated groundwater,” Water Research, Vol. 63, pp. 306-315(2014).
Samatya, S., N. Kabay, Ű. Yűksel, M. Arda, and M. Yűksel, “Removal of nitrate from aqueous solution by nitrate selective ion exchange resins,” Reactive and Functional Polymers, Vol. 66, pp. 1206-1214(2006).
Sandoval, M. A., J. L. Nava, O. Coreño, G. Carreño, L. A. Arias, and D. Méndez, “Sulfate ions removal from an aqueous solution modeled on an abandoned mine by electrocoagulation process with recirculation,” International Journal of Electrochemical Science, Vol. 12, pp. 1318-1330(2017).
Schoeman, J. J. and A. Steyn, “Nitrate removal with reverse osmosis in a rural area in South Africa,” Desalination, Vol. 155, pp. 15-26 (2003).
Servos, M.R., D. T. Bennie, B. K. Burnison, A. Jurkovic, R. McInnis, T. Neheli, A. Schnell, P. Seto, S. A. Smyth, and T. A. Ternes, “Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants,” Science of the Total Environment, Vol. 336, pp. 155-170(2005).
Silva, A. J., M. B. Varesche, E. Foresti, and M. Zaiat, “Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor,” Process Biochemistry, Vol. 37, pp. 927-935(2002).
Silva, A. M., R. M. F. Lima, and V. A. Leão, “Mine water treatment with limestone for sulfate removal,” Journal of Hazardous Materials, Vol. 221-222, pp. 45-55(2012).
Sparis, D., C. Mystrioti, A. Xenidis, and N. Papassiopi, “Reduction of nitrate by copper-coated ZVI nanoparticles,” Desalination and Water Treatment, Vol. 51, pp. 2926-2933(2013).
Subtil, E. L., S. T. A. Cassini, R. F. Gonçalves, “Sulfate and dissolved sulfide variation under low COD/sulfate ratio in up-flow anaerobic sludge blanket(UASB)treating domestic wastewater,” An Interdisciplinary Journal of Applied Science, Vol. 7, pp. 130-139(2012).
Tada, K., T. Kawaguchi, and K. Shimazu, “High electrocatalytic performance of Pd/Sn/Au electrodes for nitrate reduction,” Journal of Electroanalytical Chemistry, Vol. 572, pp. 93-99(2004).
Tang, W., P. Kovalsky, D. He, and T. D. Waite, “Fluoride and nitrate removal from brackish ground waters by batch-mode capacitive deionization,” Water Research, Vol. 84, pp. 342-349(2015).
Tran, B. C., M. J. Teil, M. Blanchard, F. Alliot, and M. Chevreuil, “BPA and phthalate fate in a sewage network and an elementary river of France. Influence of hydroclimatic conditions,” Chemosphere, Vol. 119, pp. 43-51(2015).
Vasudevan, S., F. Epron, J. Lakshmi, S. Ravichandran, S. Mohan, and G. Sozhan, “Removal of NO3- from drinking water by electrocoagulation – An alternate approach,” CLEAN – Soil, Air, Water, Vol. 38, pp. 225-229(2010).
Vasudevan, S., J. Lakshmi, J. Jayaraj, and G. Sozhan, “Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes,” Journal of Hazardous Materials, Vol. 164, pp. 1480-1486(2009).
Vohla, C., M. Kõiv, H. J. Bavor, F. Chazarenc, and Ü. Mander, “Filter materials for phosphorus removal from wastewater in treatment wetlands—A review,” Ecological Engineering, Vol. 37, pp. 70-89(2011).
Wang, D., H. Tang, and J. Gregory, “Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: Effect of sulfate ion,” Environmental Science and Technology, Vol. 36, pp. 1815-1820(2002).
Wang, D., L. Liu, X. Jiang, J. Yu, and X. Chen, “Adsorption and removal of malachite green from aqueous solutionusing magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 466, pp. 166-173(2015a).
Wang, J. and B. Chen, “Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials,” Chemical Engineering Journal, Vol. 281, pp. 379-388(2015b).
Wang, J. and L. Chu, “Biological nitrate removal from water and wastewater by solid-phase denitrification process,” Biotechnology Advances, Vol. 34, pp. 1103-1112(2016a).
Wang, J., X. Song, Y. Wang, B. Abayneh, Y. Li, De. Yan, and J. Bai, “Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode,” Bioresource Technology, Vol. 221, pp. 358-365(2016b).
Weigert, T., J. Altmann, and S. Reppeerger, “Crossflow electrofiltration in pilot scale,” Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
Wen, Z., Y. Zhang, and C. Daib, “Removal of phosphate from aqueous solution using nanoscalezerovalent iron(nZVI),” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 457, pp. 433-440(2014).
Wu, S., Y. Dang, B. Qiu, Z. Liu, and D. Sun, “Effective treatment of fermentation wastewater containing high concentration of sulfate by two-stage expanded granular sludge bed reactors,” International Biodeterioration and Biodegradation, Vol. 104, pp. 15-20(2015).
Xie, G., P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, and J. Wang, “A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution,” Journal of Materials Chemistry, Vol. 22, pp. 1033-1039(2012).
Yadav, A. K., L. Singh, A. Mohanty, S. Satya, and T. R. Sreekrishnan, “Removal of various pollutants from wastewater by electrocoagulation using iron and aluminium electrode,” Desalination and Water Treatment, Vol. 46, pp. 352-358(2012).
Yang, G. C. C. and C. H. Yen, “The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions,” Journal of Membrane Science, Vols. 425-426, pp. 121-130 (2013).
Yang, G. C. C. and C. H. Yen, “Treatment of acetaminophen and erythromycin in sewage by the simultaneous electrocoagulation/electrofiltration process using tubular carbonaceous/ceramic composite membrane,” The 4th IWA-ASPIRE Conference Exhibition, October 2-6 Tokyo, Japan(2011).
Yang, G. C. C., C. H. Yen, and C. L. Wang, “Monitoring and removal of residual phthalate esters andpharmaceuticals in the drinking water of Kaohsiung City, Taiwan,” Journal of Hazardous Materials, Vol. 277, pp. 53-61(2014).
Zaviska, F., P. Drogui, A. Grasmick, A. Azais, and M. Hĕran, “Nanofiltration membrane bioreactor for removing pharmaceutical compounds,” Journal of Membrane Science, Vol. 429, pp. 121-129(2013).
Zhang, H., J. Jiang, M. Li, F. Yan, C. Gong, and Q. Wang, “Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage,” Journal of Environmental Management, Vol. 166, pp. 407-413(2016a).
Zhang, H., M. Du, H. Jiang, D. Zhang, L. Lin, H. Yea, and X. Zhang, “Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China,” Environmental Science: Processes & Impacts, Vol. 17, pp. 225-234(2015).
Zhang, Y., S. Zhang, J. Gao, and T. S. Chung, “Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal,” Journal of Membrane Science, Vol. 515, pp. 230-237(2016b).
Zhang, Y., Y. Tang, S. Li, and S. Yu, “Sorption and removal of tetrabromobisphenol Afrom solution by graphene oxide,” Chemical Engineering Journal, Vol. 222, pp. 94-100(2013).
Zhang, Z. and A. Chen, “Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization,” Separation and Purification Technology, Vol. 164, pp. 107-113(2016c)
Zhao, G., J. Li, X. Ren, C. Chen, and X. Wang, “Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management,” Environmental Science and Technology, Vol. 45, pp. 10454-10462(2011).
Zhao, J., Z. Wang, J. C. White, and B. Xing, “Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation,” Environmental Science and Technology, Vol. 48, pp. 9995-10009(2014).
電子全文 電子全文(網際網路公開日期:20221023)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估
2. 新穎管狀碳質/陶瓷複合膜製備及其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究
3. 利用二種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究
4. 同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水溶液中之環境荷爾蒙及藥物
5. 利用同步電混凝/電過濾程序處理含奈米級TiO2之有機廢水
6. 以垂直流式人工濕地處理含硫酸鹽廢水之研究
7. 新穎電薄膜程序處理生活污水中之環境荷爾蒙及藥物
8. 利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽
9. 生活污水中鄰苯二甲酸酯類與藥物:監測及新穎電薄膜處理
10. 以硝酸鋁/二氧化矽改質Fe3O4以吸附水溶液中磷酸鹽
11. 利用石墨烯奈米材料吸附程序及同步電混凝/電過濾程序去除生活污水中關切的新興污染物
12. 同步電混凝/電過濾程序結合自製管狀碳質/陶瓷複合膜去除水中關切的新興污染物
13. 含石墨烯/氧化鋁管狀複合膜結合同步電混凝/電過濾程序去除不同水體中新興污染物效能評估
14. 利用同步電混凝/電過濾技術處理化學機械研磨廢水
15. 自製管狀氧化鈦/氧化鋁複合膜同步電混凝/電過濾處理化學機械研磨廢水之效能評估
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔