(3.215.180.226) 您好!臺灣時間:2021/03/06 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳迪丘
研究生(外文):Di-Chiu Chen
論文名稱:降低處理後清水鋁濃度之個案研究
論文名稱(外文):The case study of reducing concentrations of aluminum in treated clear water
指導教授:高志明高志明引用關係
指導教授(外文):Kao,Chih-ming
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:氯化鐵多元聚化鋁pH硫酸鋁混凝劑低濁度
外文關鍵詞:ferric chloridelow turbidityaluminum sulfatealuminumCoagulantpolyaluminumpH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為原水中鋁濃度偏高,加上淨水程序添加含鋁混凝劑來處理原水,故導致某一個淨水場處理後之鋁濃度無法低於內控目標值。本研究的實驗方法是採集這個淨水廠原水,淨水場原水濁度範圍在10〜20 NTU,以實驗室杯瓶試驗進行,瓶杯靜置後之上澄液水質分析。初步結果顯示殘留鋁型態主要以顆粒鋁(約佔60%)型態存在,原水水樣經過三種混凝劑處理,發現混凝劑對於上澄液鋁的處理效率由高到低依序為:氯化鐵>多元聚化鋁(簡稱PACl)>硫酸鋁混凝劑,當添加這些鋁系、建議若使用PACl作為混凝劑,加藥量12mg/L,pH值控制在7.01與7.62 ; 若使用硫酸鋁作為混凝劑,加藥量在16 mg/L,pH控制在7.01與7.62時 ; 若使用氯化鐵作為混凝劑,加藥量在6 mg/L,不用調整pH與不需增減加藥量。上述三種方法皆可以使得本個案在低濁度原水之條件下,處理後清水鋁濃度低於0.16mg/L之內控目標值,符合現行飲用水法規。鐵系混凝劑,上澄液殘餘鋁濃度隨著添加混凝劑劑量上升而增加。
Because the concentration of aluminum in raw water was high, and the aluminum-based coagulant was added in water treatment processes to purify the raw water, result in the residual concentration of aluminum could not lower than the internal control target value. The experimental method of this study is to test raw water in a water treatment plant. The turbidity of tested raw water is ranging from 10 to 20 NTU, and is carried out a laboratory jar test. After the water was tested and precipitated, the water quality of the water was analyzed. Results show that the residual aluminum type mainly exists in the form of aluminum particles (about 60%). The raw water samples were treated by three different coagulants. It was found that the treatment efficiency of aluminum in treated waters from high to low were : ferric chloride > polyaluminum polyhydride (referred to as PACl) > aluminum sulfate coagulant. When adding these aluminum-based coagulants, it is recommended to use PACl as a coagulant, and the dosage is 12 mg / L, the pH value is controlled at 7.01 and 7.62; If aluminum sulfate is used as a coagulant, the optima dosage is 16 mg/L, optima pH should be controlled at 7.01 and 7.62; if ferric chloride is used as coagulant, the optima dosage is 6 mg/L, and it is no need to adjust pH and to increase or decrease the dosage. All of the above three methods can make the case study of the internal control target value of aluminum in treated water below 0.16mg/L under the condition of low turbidity of raw water, and pass the current drinking water regulations. For the iron-based coagulant, the residual concentration of aluminum was increased as the dosage of the added coagulant increased.
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abastract iv
圖目錄 vii
表目錄 ix
第一章 前 言 1
1-1 研究緣起 1
1-2 研究內容 2
第二章 研究背景與文獻整理 3
2-1淨水場原水來源及供水現況 3
2-1-1 水庫水質 3
2-1-2 B淨水場概述 10
2-2 原水及清水鋁性質及控制方法 13
2-3 影響活性碳吸附因子 16
2-3-1 混凝作用對活性碳吸附的影響 16
2-3-2 加氯對活性碳吸附的影響 16
2-4混凝膠凝與沉澱機制 19
2-4-1混凝機制 20
2-4-2膠凝機制 21
2-4-3沉澱機制 22
2-5 常見混凝劑種類及相關研究 24
2-5-1混凝劑種類 24
2-5-2鐵係混凝劑相關研究 25
2-5-3 鋁系混凝系相關研究 26
2-6影響混凝效率之因子 28
2-6-1 pH 28
2-6-2 加藥量 30
2-6-3水溫 34
第三章 研究方法及步驟 35
3-1 研究方法 35
3-2 實驗藥品及設備 36
3-3 水質項目與方法 37
3-4 採樣前置作業與品保品管作業 38
3-5 杯瓶試驗 38
第四章 結果與討論 44
4-1以濁度決定最適加藥量之杯瓶試驗 44
4-2以清水鋁濃度決定最佳pH之杯瓶試驗 47
4-3以清水鋁濃度決定增減加藥量之杯瓶試驗 51
4-4混凝劑成本分析 54
4-5降低處理後清水鋁方法 59
第五章 結論與建議 62
5-1結論 62
5-2建議 63
參考文獻 64


圖目錄
圖2-1-1-1、A水庫集水區概況圖…………………..................………….4
圖2-2-1-2、A水庫概況…………………….…………………..………..…..5
圖2-1-1-3、A水庫抽水站………………………………………………..…..5
圖2-1-1-4、A水庫民國82年至民國106年卡爾森優養指標變化趨勢圖…………………..……………………………………...……………...……..9
圖2-1-2-1、B淨水場淨水處理流程圖………………………………..…..10
圖2-1-2-2、B淨水場場終沉池………………………......................……11
圖2-1-2-3、B淨水場刮泥設備……………………………………………….11
圖2-1-2-4、B淨水場抽泥設備………………………………………..……12
圖2-1-2-5、B淨水場過濾單元……………………………………….…..…12
圖2-4-1、一般混凝淨水處理設置…………………………………………19
圖2-4-1-1、吸附及架橋作用…………………………………………..……21
圖2-4-2-1、電雙層示意圖…………………………………..…………….…22
圖2-5-2-1、鐵之溶解度積表…………………………….…………………26
圖2-5-3-1、鋁之溶解度積表………………………….………………….…27
圖2-6-1-1、不同加藥量對之影響………………………….………………29
圖2-6-1-2、PACl沉澱物濃度與pH之關係………………………………30
圖2-6-2-1、加藥量與pH變化之關係…..…………………………….……31
圖2-6-2-2、加藥量與殘餘濁度之關係……..………………….………….31
圖2-6-2-3、不同混凝劑及加藥量對膠羽形成速率及膠羽大小影..………………………………………………………..…………….……...33
圖3-1-1、研究架構流程圖…………..………..……………………………..35
圖3-5-1、杯瓶試驗架構圖………………………..……….………………..40
圖3-5 2、杯瓶試驗示意圖……………….……...….….……………………41
圖3-5-3、第一階段杯瓶試驗………………….………………………….…42
圖3-5 4、第二階段杯瓶試驗………………….………………………….…43

表目錄
表2-1-1-1 A、水庫在整治前後之水質彙整表………….........................8
表2-6-1-1、鐵系及鋁系混凝劑操作參數比較表……………………….…28
表2-6-2-1、不同混凝劑於不同加藥量下之Sf、Rf值….……………..…34
表 3-1-1、藥品及設備清單……………………………………………….…36
表 3-2-1、水質分析方法及水質標準表……………………………..……37
表4-1-1、第一階段杯瓶試驗結果彙整……………………………….…...45
表4-2-1、第二階段杯瓶試驗結果彙整……………………………..…….48
表4-3-1、第三階段杯瓶試驗結果彙整…………………………………..…52
表4-4-1、PACl、硫酸鋁與氯化鐵混凝劑之成本分析與差異…………56
表4-4-2、調整pH後添加PACl、硫酸鋁與氯化鐵之成本分析與差異比較彙整……..………………………………...…….………………………..…58
表4-5-1、B淨水場殘餘鋁控制策略評分表………………….……………61
[1]施郁庭, 2007, "台灣南部河川上游水綿屬與剛毛藻屬之分佈及其生長環境因子探究," 成功大學環境工程學系學位論文, pp. 1-133.
[2]張雅雯, 2005, "柱孢藻在金門水庫形成優勢之原因探討," 臺灣大學植物科學研究所學位論文, pp. 1-89.
[3]Z.-m. Lin, "Removal of Organic Matters from Domestic Wastewater Using GAC Trickling Filter," 2012.
[4]郭修志, 2006, "自來水配水系統中消毒副產物生成模式之研究," 臺灣大學環境工程學研究所學位論文, pp. 1-159.
[5]B. Xie, L. Wang, and H. Liu, "Using low intensity ultrasound to improve the efficiency of biological phosphorus removal," Ultrasonics sonochemistry, vol. 15, pp. 775-781, 2008.
[6]R. I. Daly, L. Ho, and J. D. Brookes, "Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation," Environmental science & technology, vol. 41, pp. 4447-4453, 2007.
[7]J. K. Edzwald and J. Haarhoff, "Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation," Water research, vol. 45, pp. 5428-5440, 2011.
[8]W. Yu, J. Gregory, and L. C. Campos, "Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC," Water research, vol. 44, pp. 3959-3965, 2010.
[9]Y. Zhao, B. Gao, H. Shon, Y. Wang, J.-H. Kim, and Q. Yue, "The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4)," Journal of hazardous materials, vol. 198, pp. 70-77, 2011.
[10]R. Packham, "Some studies of the coagulation of dispersed clays with hydrolyzing salts," Journal of colloid science, vol. 20, pp. 81-92, 1965.
[11]M. Vepsäläinen, M. Pulliainen, and M. Sillanpää, "Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC)," Separation and Purification Technology, vol. 99, pp. 20-27, 2012.
[12]D. Wang, R. Wu, Y. Jiang, and C. W. Chow, "Characterization of floc structure and strength: role of changing shear rates under various coagulation mechanisms," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 379, pp. 36-42, 2011.
[13]W. J. Snodgrass, M. M. Clark, and C. R. O''Melia, "Particle formation and growth in dilute aluminum (III) solutions: characterization of particle size distributions at pH 5.5," Water research, vol. 18, pp. 479-488, 1984.
[14]X. Zhan, B. Gao, Q. Yue, B. Liu, X. Xu, and Q. Li, "Removal natural organic matter by coagulation–adsorption and evaluating the serial effect through a chlorine decay model," Journal of hazardous materials, vol. 183, pp. 279-286, 2010.
[15]M. A. Yukselen and J. Gregory, "The reversibility of floc breakage," International Journal of Mineral Processing, vol. 73, pp. 251-259, 2004.
[16]T. Li, Z. Zhu, D. Wang, C. Yao, and H. Tang, "The strength and fractal dimension characteristics of alum–kaolin flocs," International Journal of Mineral Processing, vol. 82, pp. 23-29, 2007.
[17]R. K. Chakraborti, J. F. Atkinson, and J. E. Van Benschoten, "Characterization of alum floc by image analysis," Environmental Science & Technology, vol. 34, pp. 3969-3976, 2000.
[18]P. Zhao, S. Ge, Z. Chen, and X. Li, "Study on pore characteristics of flocs and sludge dewaterability based on fractal methods (pore characteristics of flocs and sludge dewatering)," Applied Thermal Engineering, vol. 58, pp. 217-223, 2013.
[19]D. Ray and R. Hogg, "Agglomerate breakage in polymer-flocculated suspensions," Journal of colloid and interface science, vol. 116, pp. 256-268, 1987.
[20]N. Graham, F. Gang, G. Fowler, and M. Watts, "Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment," Colloids and surfaces A: Physicochemical and engineering aspects, vol. 327, pp. 9-16, 2008.
[21]R. Sanghi, B. Bhattacharya, and V. Singh, "Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions," Bioresource technology, vol. 97, pp. 1259-1264, 2006.
[22]S. Mukherjee, A. Pariatamby, J. N. Sahu, and B. Sen Gupta, "Clarification of rubber mill wastewater by a plant based biopolymer–Comparison with common inorganic coagulants," Journal of Chemical Technology and Biotechnology, vol. 88, pp. 1864-1873, 2013.
[23]A. Bahadori, M. Clark, and B. Boyd, Essentials of water systems design in the oil, gas, and chemical processing industries: Springer Science & Business Media, 2013.
[24]J. Bratby, Coagulation and flocculation in water and wastewater treatment: IWA publishing, 2006.
[25]L. G. d. L. Vaz, M. R. F. Klen, M. T. Veit, E. A. d. Silva, T. A. Barbiero, and R. Bergamasco, "Avaliação da eficiência de diferentes agentes coagulantes na remoção de cor e turbidez em efluente de galvanoplastia," Eclética Química, vol. 35, pp. 45-54, 2010.
[26]F. Sher, A. Malik, and H. Liu, "Industrial polymer effluent treatment by chemical coagulation and flocculation," Journal of Environmental Chemical Engineering, vol. 1, pp. 684-689, 2013.
[27]J. Beltrán-Heredia, J. Sánchez-Martín, and M. Barrado-Moreno, "Long-chain anionic surfactants in aqueous solution. Removal by Moringa oleifera coagulant," Chemical Engineering Journal, vol. 180, pp. 128-136, 2012.
[28]T. P. Flaten, "Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water," Brain research bulletin, vol. 55, pp. 187-196, 2001.
[29]G. C. Budd, A. F. Hess, H. Shorney-Darby, J. J. Neemann, C. M. Spencer, J. D. Bellamy, et al., "Coagulation applications for new treatment goals," Journal (American Water Works Association), vol. 96, pp. 102-113, 2004.
[30]A. Matilainen, N. Lindqvist, and T. Tuhkanen, "Comparison of the effiency of aluminium and ferric sulphate in the removal of natural organic matter during drinking water treatment process," Environmental technology, vol. 26, pp. 867-876, 2005.
[31]H. H. Hahn, E. Hoffmann, and H. Ødegaard, Chemical Water and Wastewater Treatment IX: IWA publishing, 2007.
[32]C. Fitzpatrick, E. Fradin, and J. Gregory, "Temperature effects on flocculation, using different coagulants," Water Science and Technology, vol. 50, pp. 171-175, 2004.
[33]P. Jarvis, E. Sharp, M. Pidou, R. Molinder, S. A. Parsons, and B. Jefferson, "Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants," Water research, vol. 46, pp. 4179-4187, 2012.
[34]J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe, and G. Tchobanoglous, MWH''s water treatment: principles and design: John Wiley & Sons, 2012.
[35]M. Yan, D. Wang, J. Ni, J. Qu, W. Ni, and J. Van Leeuwen, "Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: Targets and techniques," Separation and Purification Technology, vol. 68, pp. 320-327, 2009.
[36]J. Gregory and J. Duan, "Hydrolyzing metal salts as coagulants," Pure and Applied Chemistry, vol. 73, pp. 2017-2026, 2001.
[37]D. J. Pernitsky and J. K. Edzwald, "Selection of alum and polyaluminum coagulants: principles and applications," Journal of Water Supply: Research and Technology-AQUA, vol. 55, pp. 121-141, 2006.
[38]J. Wang, W. Xu, J. Xu, D. Wei, H. Feng, and Z. Xu, "Effect of aluminum speciation and pH on in-line coagulation/diatomite microfiltration process: correlations between aggregate characteristics and membrane fouling," Journal of Molecular Liquids, vol. 224, pp. 492-501, 2016.
[39]A. Amirtharajah and K. M. Mills, "Rapid-mix design for mechanisms of alum coagulation," Journal (American Water Works Association), pp. 210-216, 1982.
[40]N. Wei, Z. Zhang, D. Liu, Y. Wu, J. Wang, and Q. Wang, "Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage," Chinese Journal of Chemical Engineering, vol. 23, pp. 1041-1046, 2015.
[41]M. Mikola, J. Rämö, A. Sarpola, and J. Tanskanen, "Removal of different NOM fractions from surface water with aluminium formate," Separation and Purification Technology, vol. 118, pp. 842-846, 2013.
[42]M. Pivokonsky, J. Naceradska, T. Brabenec, K. Novotna, M. Baresova, and V. Janda, "The impact of interactions between algal organic matter and humic substances on coagulation," Water research, vol. 84, pp. 278-285, 2015.
[43]S. K. Dentel and J. M. Gossett, "Mechanisms of coagulation with aluminum salts," Journal (American Water Works Association), pp. 187-198, 1988.
[44]M. v. Smoluchowski, "Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen," Zeitschrift für physikalische Chemie, vol. 92, pp. 129-168, 1918.
[45]D. Wang, H. Tang, and J. Gregory, "Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: effect of sulfate ion," Environmental Science & Technology, vol. 36, pp. 1815-1820, 2002.
[46]Y. Zhao, B. Gao, G. Zhang, S. Phuntsho, and H. Shon, "Coagulation by titanium tetrachloride for fulvic acid removal: Factors influencing coagulation efficiency and floc characteristics," Desalination, vol. 335, pp. 70-77, 2014.
[47]P. Jarvis, B. Jefferson, and S. A. Parsons, "Breakage, regrowth, and fractal nature of natural organic matter flocs," Environmental Science & Technology, vol. 39, pp. 2307-2314, 2005.
[48]Y. Zhao, B. Gao, H. Shon, B. Cao, and J.-H. Kim, "Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts," Journal of Hazardous Materials, vol. 185, pp. 1536-1542, 2011.
[49]B. Cao, B. Gao, X. Liu, M. Wang, Z. Yang, and Q. Yue, "The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment," Water research, vol. 45, pp. 6181-6188, 2011.
[50]Y. Zhao, B. Gao, H. Shon, Y. Wang, J.-H. Kim, Q. Yue, et al., "Anionic polymer compound bioflocculant as a coagulant aid with aluminum sulfate and titanium tetrachloride," Bioresource technology, vol. 108, pp. 45-54, 2012.
[51]M. Aguilar, J. Saez, M. Llorens, A. Soler, and J. Ortuno, "Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation–flocculation using ferric sulphate as coagulant and different coagulant aids," Water Research, vol. 37, pp. 2233-2241, 2003.
[52]P. Jarvis, B. Jefferson, and S. Parsons, "The duplicity of floc strength," Water Science and Technology, vol. 50, pp. 63-70, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔