(54.236.58.220) 您好!臺灣時間:2021/03/01 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉皓
研究生(外文):Hao Liu
論文名稱:利用木製加工產出木屑結合廢棄油泥製成RDF-5研究
論文名稱(外文):Research on RDF-5 fabricated from waste sludge and sawdust
指導教授:林淵淙
指導教授(外文):Yuan-Chung Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:廢油泥垃圾衍生燃料RDF-5廢木屑
外文關鍵詞:waste woodSludgewaste-derived fuelRDF-5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣的工業發展中,眾多類型工業用油的需求下,廢棄油泥的處理便成為必要的課題,而研究顯示油泥含有高熱值可回收其中的熱能源。國內仍有大部分未被回收的油泥常直接進入掩埋場,如在處裡過程中稍有不當,將會衍生出嚴重污染土壤及地下水之問題。目前掩埋場屬於低成本且簡易的方法,但其容量逐漸達飽和,也會存在著污染物溶出的風險。如今環保意識日益高漲,為降低燃料燃燒後之污染與使用之成本,預達成廢棄物資源化再利用之目標。本研究選用原木製加工產出廢木屑作為基材,與合法油泥回收處理場所提供之油泥均勻混合後進行壓錠,製成固態廢棄物衍生燃料-RDF-5。其優點有熱值均勻、體積減量、容易保存運送等,與現行多類燃料混燒亦可降低二次污染物之排放量,可使企業產生經濟效益,也能達到廢棄物減量、降低污染之目的。本研究結果顯示添加木屑至廢黃油或工業廢潤滑油泥中之最佳比例RDF-5,熱值分別廢黃油RDF-5 為7,113 kcal/kg 及工業廢潤滑油泥RDF-5 為6,008 kcal/kg,其熱值高於煙煤具有輔助燃料之潛力。在油泥製備RDF-5 的技術上,應用於廢棄物焚燒廠、發電廠等產業上,不僅可降低環境污染、亦增加企業在產業間競爭力。
In the industrial development of Taiwan, the disposal of waste sludge has become a necessary issue under the demand of many types of industrial oils, and studies have shown that sludge contains high calorific value to recover thermal energy. Most of the unrecovered sludge in China still directly enters the landfill. If it is slightly inappropriate in the process, it will cause serious pollution of soil and groundwater. At present, the landfill is a low-cost and simple method, but its capacity is gradually saturated, and there is also a risk of pollutants being dissolved. Nowadays, environmental awareness is increasing. In order to reduce the cost of pollution and use after fuel combustion, the goal of recycling and recycling of waste is achieved. In this study, the waste wood chips produced from the raw wood processing were used as the
substrate, and the sludge provided by the legal sludge recovery and treatment site was uniformly mixed and then pressed into a solid waste-derived fuel-RDF-5. The advantages are uniform heating value, volume reduction, easy storage and transportation, etc., and the current multi-class fuel co-firing can also reduce the emission of secondary pollutants, which can enable enterprises to generate economic benefits, and can also achieve waste reduction and pollution reduction. purpose. The results of this study show that RDF-5 added to wood chips to waste butter or industrial waste lubricating oil has a calorific value of 7,113 kcal/kg and 6,008 kcal/kg, respectively, and its calorific value is higher than that of bituminous coal with auxiliary fuel. In the technology of preparing RDF-5 for sludge, it can be applied to industries such as waste incineration plants and power plants, which not only reduces environmental pollution, but also increases the competitiveness of enterprises in the industry.
目錄

學位論文審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 ix
表目錄 xi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 2
第二章 文獻回顧 3
2-1 油泥來源與定義 3
2-1-1 油泥 3
2-1-2 油泥組成分 4
2-1-3 油泥性質 5
2-1-4 廢油泥資源化技術概況 7
2-2 基材 10
2-2-1 木材衍生物 10
2-2-2 加工木屑廢棄物再利用 11
2-2-3 生質物共燃燒的材料特性與饒燒效果 12
2-3 廢棄衍生燃料 RDF 13
2-3-1 RDF 分類 13
2-3-2 RDF 特性 14
2-3-3 RDF 製造流程 15
2-3-4 國內外應用 RDF 之技術 16
2-4 RDF 造成環境之影響 12
2-4-1 一氧化碳(CO)之危害特性 18
2-4-2 二氧化碳(CO2)之危害特性 18
2-4-3 氮氧化物(NOx)之危害特性 19
2-4-4 懸浮微粒(PM2.5)之危害特性 20
2-5 鍋爐 21
2-5-1 鍋爐介紹 21
2-5-2 鍋爐原理 21
2-5-3 鍋爐種類 22
2-5-4 鍋爐燃料 23
第三章 研究方法 25
3-1 研究架構與流程 25
3-2 實驗設備與藥品及耗材 30
3-2-1 元素分析儀 30
3-2-2 感應耦合原子發射光譜儀 31
3-2-3 熱重分析儀 32
3-2-4 環境掃描式電子顯微鏡 33
3-2-5 熱卡計 34
3-2-6 直讀式氣體偵測儀 35
3-2-7 循環送風式烘箱 36
3-2-8 微量分析電子天秤 36
3-2-9 PM2.5 採樣管氯離子含量測定儀 37
3-2-10 氯離子含量測定儀 38
3-2-11 實驗使用藥品及耗材 39
第四章 結果與討論 40
4-1 基本性質分析 40
4-1-1 三成分分析 40
4-2 重金屬分析 41
4-2-1 原始基材 41
4-2-2 廢黃油混和木屑製成 RDF-5 43
4-2-3 工業廢潤滑油混和木屑製成 RDF-5 46
4-3 元素分析 50
4-3-1 原始基材 50
4-3-2 廢黃油混和木屑製成 RDF-5 52
4-3-3 工業廢潤滑油混和木屑製成 RDF-5 54
4-4 燃燒試驗 56
4-4-1 廢黃油混和木屑製成 RDF-5 56
4-4-2 工業廢潤滑油混和木屑製成 RDF-5 57
4-5 熱值檢測 56
4-5-1 原始基材 58
4-5-2 油泥混和木屑製成 RDF-5 60
4-6 燃燒氣體分析 64
4-6-1 廢黃油混和木屑製成 RDF-5 64
4-6-2 工業廢潤滑油混和木屑製成 RDF-5 66
4-7 PM2.5 燃燒排放分析 68
4-7-1 廢黃油混和木屑製成 RDF-5 69
4-7-2 工業廢潤滑油混和木屑製成 RDF-5 70
4-8 熱重分析 71
4-8-1 廢黃油混和木屑製成 RDF-5 71
4-8-2 工業廢潤滑油混和木屑製成 RDF-5 72
4-9 RDF 燃燒後灰分環境掃描分析 73
4-10 RDF 燃燒後灰分毒性溶出試驗(TCLP) 74
4-10-1 廢黃油混和木屑製成 RDF-5 74
4-10-2 工業廢潤滑油混和木屑製成 RDF-5 75
4-11 成本效益分析 76
第五章 結論與建議 80
5-1 結論 80
5-2 建議 81
參考文獻 82

圖目錄
圖 2-1 廢棄物衍生燃料 RDF-5 製造流程 16
圖 2-2 鍋爐系統流程示意圖 21
圖 3-1 廢木屑進行過篩程序 25
圖 3-2 研究架構流程圖 29
圖 3-3 元素分析儀 30
圖 3-4 感應耦合園子發射光譜儀 32
圖 3-5 熱重分析儀 32
圖 3-6 環境掃描式電子顯微鏡 33
圖 3-7 熱 卡計 35
圖 3-8 直讀式氣體偵測儀 35
圖 3-9 循環式風箱 36
圖 3-10 微量分析電子天平 36
圖 3-11 PM2.5 採樣管 37
圖 3-12 氯離子含量測定儀 38
圖 4-1 廢 木屑 40
圖 4-2 廢 黃油 40
圖 4-3 工業廢潤滑油泥 40
圖 4-4 廢黃油與木屑混和之 Zn 含量變化 44
圖 4-5 廢黃油與木屑混和之 Cr 含量變化 44
圖 4-6 廢黃油與木屑混和之 Ni 含量變化 45
圖 4-7 廢黃油與木屑混和之 Cu 含量變化 45
圖 4-8 工業廢潤滑油泥與木屑混和之 Zn 含量變化 47
圖 4-9 工業廢潤滑油泥與木屑混和之 Cr 含量變化 47
圖 4-10 工業廢潤滑油泥與木屑混和之 Ni 含量變化 48

圖 4-11 工業廢潤滑油泥與木屑混和之 Cu 含量變化 48
圖 4-12 工業廢潤滑油泥與木屑混和之 Pb 含量變化 49
圖 4-13 廢黃油、工業廢潤滑油泥與木屑之碳含量 51
圖 4-14 廢黃油與木屑混合之碳含量變化 53
圖 4-15 工業廢潤滑油泥與木屑混合之碳含量變化 55
圖 4-16 廢黃油製成 RDF-5 燃燒前後碳含量變化 56
圖 4-17 工業廢潤滑油泥製成 RDF-5 燃燒前後碳含量變化 57
圖 4-18 原基材熱值 59
圖 4-19 原基材碳含量 59
圖 4-20 廢黃油及工業廢潤滑油泥製成 RDF-5 之熱值 62
圖 4-21 廢黃油及工業廢潤滑油泥製成 RDF-5 之碳含量 62
圖 4-22 廢黃油與木屑 2:1 之空氣污染排放濃度變化 65
圖 4-23 廢黃油與木屑 3:1 之空氣污染排放濃度變化 65
圖 4-24 工業廢潤滑油泥與木屑 2:1 之空氣污染排放濃度變化 67
圖 4-25 工業廢潤滑油泥與木屑 3:1 之空氣污染排放濃度變化 67
圖 4-26 廢黃油及工業廢潤滑油泥製成 RDF-5 之熱重分析曲線 71
圖 4-27 廢黃油及工業廢潤滑油泥製成 RDF-5 之熱重分析曲線 72

表目錄
表 2-1 油田油泥與油池油泥之組成比例 4
表 2-2 各廠所提供之油泥基本資料 6
表 2-3 環保署廢油及油泥工業廢棄物申報數量 7
表 2-4 廢棄衍生燃料分類、發電效率及主要應用 13
表 2-5 各種燃料熱值表 24
表 3-1 油泥、基材之添加比例 26
表 3-2 不同配比廢油泥之 RDF-5 混和樣態 27
表 3-3 廢黃油及工業廢潤滑油泥之 RDF-5 壓錠後樣態 28
表 3-2 實驗所需耗材及藥品清單 39
表 4-1 油泥三成分分析 40
表 4-2 土壤汙染管制標準 41
表 4-3 廢黃油、工業廢潤滑油泥及木屑重金屬含量 42
表 4-4 廢黃油混和木屑之重金屬分析 43
表 4-5 工業廢潤滑油泥混和木屑之重金屬分析 46
表 4-6 廢黃油、工業廢潤滑油泥及木屑之基本元素分析 50
表 4-7 廢黃油混和木屑之元素分析 52
表 4-8 工業廢潤滑油泥混和木屑之重金屬分析 55
表 4-9 廢黃油製成 RDF-5 燃燒試驗碳含量分析 56
表 4-10 工業廢潤滑油泥製成 RDF-5 燃燒試驗碳含量分析 57
表 4-11 廢黃油、工業廢潤滑油泥及木屑之熱值分析 58
表 4-12 混和後 RDF-5 燃料之熱值 60
表 4-13 基材熱值與碳含量 61
表 4-14 各式燃料熱值 63
表 4-15 各式燃料之用途 63

表 4-16 廢黃油製成 RDF-5 燃燒試驗氣體分析 65
表 4-17 工業廢潤滑油泥製成 RDF-5 燃燒試驗氣體分析 67
表 4-18 廢黃油製成 RDF-5 燃燒後 PM2.5 排放濃度 69
表 4-19 工業廢潤滑油泥製成 RDF-5 燃燒後 PM2.5 排放濃度 70
表 4-20 工業廢潤滑油泥製成 RDF-5 燃燒後 PM2.5 排放濃度 70
表 4-20 廢黃油、工業廢潤滑油泥灰渣成像表 73
表 4-21 廢黃油製成 RDF-5 之灰分毒性溶出試驗 74
表 4-22 工業廢潤滑油泥製成 RDF-5 之灰分毒性溶出試驗 75
表 4-23 設備含維修成本 76
表 4-24 人力、原料及水電成本(廢黃油) 77
表 4-25 成本效益總表(廢黃油) 77
表 4-26 人力、原料及水電成本(工業廢潤滑油泥) 78
表 4-27 成本效益總表(工業廢潤滑油泥) 78
表 4-28 燃料煤與 RDF-5 價格之比較 79
Adriano D.C, Trace Elements in Terrestrial Environments,Springer SBM, 2001.
Agustin G. B., Julia M., Jose A., Juan A. C. Thermogravimetric monitoring of oil refinery sludge. Journal of Analytical and Applied Pyrolysis, 2014, 105, Pages 8-13.
Anufriev R. V., Volkova G. I., Vasilyeva A. A., Petukhov A. V., Usheva N. V. The Integrated Effect on Properties and Composition of High-paraffin Oil Sludge. Procedia Chemistry, 2015, 15, Pages 2-7.
Buddhike N.M., Suyin G., Caro E., Hoon K.N.Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques.Fuel Processing Technology.2017,59,Pages 287-305.
Castorena C. G., Roldán C. T., Zapata P. I., Reyes A. J., Quej A. L., Marín
C. J., Olguín L. P. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresource Technology, 2009, 100, Pages 5671-5677.
Choi P., Wang Q., Vignol E. Molecular dynamics study of the conformation and dynamics of precisely branched polyethylene. Polymer, 2014, 55, Pages 5734-5738.
Chyang C. S., Han Y. L., Wu L. W., Wan H. P., Lee H. T., Chang Y. H. An investigation on pollutant emissions from co-firing of RDF and coal. Waste Management, 2010, 30, Pages 1334-1340.
Collivignarelli M. C., Abbà A., Padovani S., Frascarolo M., Sciunnach D., Turconi M., Orlando M. Recovery of sewage sludge on agricultural land in Lombardy: current issues and regulatory scenarios. Environmental Engineering and Management Journal,2015,14,Pages 1477-1486.
Dasom K.,Zi C.,Lin-Fu Z.,Shou-Xiong H. Air pollutants and early origins of respiratory diseases. Chronic Diseases and Translational Medicine,Volume 4, Issue 2, 2018, Pages 75-94.
Decker J. J., Meyers J. P., Paul D. R., Schiraldi D. A., Hiltner A., Nazarenko S. Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer, 2015, 61, Pages 42-54.
Deng S. H., Wang X. B., Tan H. H., Mikulčić H., Yang F. X., Li Z. F., Duić N., Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass. Thermochimica Acta,2016,633,Pages 69-79.
Deyab M. A., Riccardis D. A., Mele G. Novel epoxy/metal phthalocyanines nanocomposite coatings for corrosion protection of carbon steel. Journal of Molecular Liquids, 2016, 220, Pages 513-517.
Diop M. F., Burghardt W. R., Torkelson J. T. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer, 2014, 55, Pages 4948-4958.
Ehsan F.,Abdollah S. A multi-type multi-occurrence hazard lifecycle cost analysis framework for infrastructure management decision making. Engineering Structures, Volume 167, 15 , 2018, Pages 504-517.
Eliche Q. D., Cunha R. A. D., Corpas I. F. A. Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics. Applied Clay Science, 2015, 144, 202-211.
Eshun J.F.,Potting J., Leemans R.Wood waste minimization in the timber sector of Ghana: a systems approach to reduce environmental impact.J. Clean,Prod,2012, Pages 67-78.
Feng L., Luo J., Chen Y. Dilemma of Sewage Sludge Treatment and Disposal in China. Science of The Total Environment, 2015, 49, Pages 4781 4782.
Furukawa H.,Ko N., Go Y.B., Aratani N., Choi S.B., Choi E., Yazaydin A.Ö., Snurr R.Q, Ultrahigh porosity in metal-organic frameworks.Science, 2010,329, Pages 424-428.
Futalan C.M., Kan C.C., Dalida M.L., Pascua C., Wan M.W. “Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite.” Carbohydrate Polymers. 2011,83,Pages 697-704.
George J., Moraes R., Viviane M. N., Adilson R. G., Vinicius F. N. S., Carlos M. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Industrial Crops and Products, 2015, 64 , Pages 52-58.
Giovanni D.F.,Sabino D.G.,Ian D. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study. Waste Management,Volume 33, Issue 4,2013, Pages 974-987.
Hales R. L. Questioning Canada’s Fossil Fuel Emissions. ECOreport, 2016. Hou S. S., Chenb M. C., Lin T. H. Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) roduced from oil sludge. Fuel, 2014, 116, Pages 201-207.
Hu G., Li J., Houc H. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. Journal of Hazardous Materials, 2015, 283, Pages 832-840.
Hu Q. Y., Li M., Wang C., Ji M.Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. Journal of Hazardous Materials, 2015, 295, Pages 1-8.
Huang Y.F., Shih C.H., Chiueh P.T., Lo S.L.Microwave co-pyrolysis of sewage sludge and rice straw.Energy. 2015,87,Pages 638-644.
Huanga H.J., Yanga T., Laia F.Y., Wub G.Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar.ournal of Analytical and Applied Pyrolysis. 2017,125,Pages 61–68.
Idris J., Shirai Y., Andou Y., Ali M. A. A., Othman R. M, Ibrahim I., Hassan A. M. Self-sustained carbonization of oil palm biomass produced an acceptable heating value charcoal with low gaseous emission. Journal of Cleaner Production, 2015, 89, Pages 257-261.
Ihsan U., Raziya N., Munawar I., Qaisar M.Biosorption of chromium ontonative and immobilized sugarcane bagasse waste biomass. Ecological Engineering. 2013, Pages 99-107.
Imane T., Younes C., Fatima E.M.A., Amal E.O., Abdelaziz S.D., Fouad B., Charafeddine J., Mohammed B.Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste Management. 2017,61,Pages 78–86.
Jinxing M.,Zhiwei W.,Chaowei Z.,Yinlun X.,Zhichao W. Electrogenesis reduces the combustion efficiency of sewage sludge. Applied Energy,Volume 114, February 2014, Pages 283-289.
Joan J.,Fernando G.,Manuel A.,Nieves L.,Carlos R. Pyrolysis and char reactivity of a poor-quality refuse-derived fuel (RDF) from municipal solid waste. Fuel Processing Technology,Volume 140,2015, Pages 276-284.
Kaye, George W. C. Kaye and Laby Tables of Physical and Chemical Constants. National Physical Laboratory. 2008.
Kim S. J., Moon H. J., Kim J. K. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel. Thermochimica Acta, 2015, 613, Pages 9-16.
Kliopova I., Makarskiene K. Improving material and energy recovery from the sewage sludge and biomass residues. Waste Manage, 2015, 36, Pages 269-276.
Kurchenko A. K., Murygina V. P., Gaidamaka S. N. Comparison of bioremediation technologies for preliminary washed oil sludge in Komi Republic. Journal of Biotechnology. 2010, 150, Pages 213-214.
Kuriakose A.P., Kochu S. Bitumenous paints from refinery sludge. Surface and Coatings Technology,Volume 145, 2001, Pages 132-138.
Lei Z., Apostolos G., Wan-Yee L., Sheng-Xuan L., Ke Y., Guo-An Y., Jing-Yuan W. Characterization of Singapore RDF resources and analysis of their heating value. Sustainable Environment Research, Volume 26, Issue 1, January 2016, Pages 51-54.
Lei Z., Apostolos G., Lam W., Lin S., Yin K., Yuan G., Wang J.Characterization of Singapore RDF resources and analysis of their heating value.Sustainable Environment Research. 2016. Pages 51-54.
Leila E., Muhammad F. I., Wan Mohd Ashri Wan Daud., Mohammed HarunChakrabarti.Fuel blending effects on the co-gasification of coal and biomass – A review.Biomass and Bioenergy. 201, Pages 249-263.
Leiva M.B., Koupaie E.H., Eskicioglu C. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation. Waste Management, 2014, 34, Pages 1860-1870.
Lin B.Q., Han J., He X., Zhan Y., Yu F. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Journal of Environmental Management, 2015, 154, Pages 177-182.
Lin Y., Liao Y., Yu Z., Fang S., Lin Y., Fan Y., Peng X., Ma X. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Conversion and Management, 2016, 118, Pages 345-352.
Liu J., Jiang X., Zhou L., Wang H., Han X. Co-firing of oil sludge with coal–water slurry in an industrial internal circulating fluidized bed boiler. Journal of Hazardous Materials, 2009, 167, Pages 817-823.
Loskutova Y. V., Ryzhov N. S., Yudin N. V., Beshagin E. V. The Influence of Processing Conditions on the Sedimentation Kinetics of Highly Waxy Crude Oil. Procedia Chemistry, 2015, 15, Pages 49-53.
Ma Z. Z., Gao N. B., Xie L., Li A. Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production. Journal of Analytical and Applied Pyrolysis, 2014, 105, Pages 183-190
Massarini P.,Muraro P. RDF: From Waste to Resource – The Italian Case.
Energy Procedia,Volume 81, 2015, Pages 569-584.
Materazzi M., Lettierib P., Taylor R., Chapman C. Performance analysis of RDF gasification in a two stage fluidized bed–plasma process . Waste Management, 2016, 47, Pages 256-266.
Maxence F., Camille M., Bernard B., Sylvain C. Amine hardeners and epoxy cross-linker from aromatic renewable resources. European Polymer Journal, 2015, 73, Pages 344-362.
Mike A.A., Joana P.C.P., Roel J.W.M., Piet N.L.L. “Biosorption of Cu(II) onto agricultural materials from tropical regions.” Chemical Technology and Biotechology. 2011,86,Pages 1184-1194.
Moein K., Ali A., Shirzadi J., Ali K. Effect of chloride treatment curing condition on the mechanical properties and durability of concrete containing zeolite and micro-nano-bubble water. Construction and Building Materials,Volume 177, 20 July 2018, Pages 417-427
Moltó J., Barneto A. G., Ariza J., Conesa J. A. Gas production during the pyrolysis and gasification of biological and physico-chemical sludges from oil refinery. Journal of Analytical and Applied Pyrolysis. 2013, 103, Pages 167-172.
National Oceanic and Atmospheric Administration (NOAA). CO2 Monthly measurements. 2016.
Nicola S.,Alida B.,Marialuisa B.,Fulvio B.,Pierluigi P.,Alberto P.,Pierachille S.,Alessandro S. Which factors affect the choice of the inhaler in chronic obstructive respiratory diseases. Pulmonary Pharmacology & Therapeutics.Volume 31, 2015, Pages 63-67.
Nutongkaew P., Waewsak J., Chaichana T., Gagnon Y. Greenhouse Gases Emission of Refuse Derived Fuel-5 Production from Municipal Waste and Palm Kernel. Energy Procedia, 2014, 52, Pages 362-370.
Obi O. F. Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette. Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette, 2015, 52, Pages 1749-1758.
Ouiminga S. K., Rogaume T., Daho T., Yonli A. H., Koulidiati J. Reductive and oxidative combustion of polyethylene bags: Characterization of carbonaceous and nitrogenous species. Journal of Analytical and Applied Pyrolysis, 2014, 98, Pages 72-78.
Pánek P., Kostura B., Čepelákov I., Koutník I., Tomšej T. Pyrolysis of oil sludge with calcium-containing additive. Journal of Analytical and Applied Pyrolysis, 2014, 108, Pages 274-283.
Park S. J., Lee S. G. Studies on Surface Free Energy of an Anhydride–Epoxy Cured System: Effect of Side Alkenyl Chain Length of Hardener on Tensile and Impact Properties. Journal of Colloid and Interface Science, 2000, 228, Pages 90-94.
Park S. W., Jang C. H. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants. Waste Manage, 2011, 31, Pages 523-529.
Park S. W., Jang C. H. Fuel characteristics of sewage sludge as alternative fuel of coal, 2010.
Pemberton P.C., Annegarn H., Cook C.Emissions reductions from domestic coal burning—practical application of combustion principles.Technology. 2009.
R.Sarc., K.E.Lorber.“Production, quality and quality assurance of Refuse Derived Fuels (RDFs).Waste Management. 2013. Pages 1825-1834.
Rout T., Pradhan D., Singh R.K., Kumari N.Exhaustive study of products obtained from coconut shell pyrolysis.Journal of Environmental Chemical Engineering. 2016(4), Pages 3696-3705.
Ruben D., Loredana D F., Marta G., Maria H T. Performance evaluation of a novel anaerobic–anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater.Bioresource Technology. Volume 209, 2016, Pages 195-204
Shie J. L., Chang C. Y., Lin J. P., Wu C. H., Lee D. J. Resources recovery of oil sludge by pyrolysis: kinetics study. Journal of Chemical Technology and Biotechnology, 2000, 75(6), Pages 443-450.
Shin J., Liu X., Chikthimmah N., Lee Y. S. Polymer Surface Modification Using UV treatment for Attachment of Natamycin and the Potential Applications for Conventional Food Cling Wrap (LDPE). Applied Surface Science, 2016, 31.
Hou S., Chen M., Lin.Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge Fuel. 2014. Pages 201-207.
Shuo C.,Fengmin C.,Feng Z.,Tixiao H.,Kunio Y.,Hongtao Z. Progress in thermal analysis studies on the pyrolysis process of oil sludge. Thermochimica Acta,Volume 663, 10 May 2018, Pages 125-136.
Silva G.A.,Mendes L.M.,Trugilho P.F.,Mori F.A.,Santos I.F.,Pádua F.A.Effect of some variables of processing in the physical properties of strandboard wood panels.Ciência Rural,16,2006, Pages 51-60.
Surjit S.,Chunfei W.,Paul T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis,Volume 94, 2012, Pages 99-107.
Syeda A., Malek H.Development circumstances of four recycling industries (used motor oil, acidic sludge, plastic wastes and blown bitumen) in the world. Renewable and Sustainable Energy Reviews. 2017, Pages 605-624.
Thangalazhy G. S., Nadheri W. M. A., Jegarajan D., Sahu J. N., Mubarak N. M., Nizamuddinb S. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology, 2015, 178, Pages 65-69.
Thonemann N.,Schumann M.Environmental impacts of wood-based products under consideration of cascade utilization: a systematic literature review.J. Clean. Prod,172,2018, Pages 4181-4188.
Top Y.,Adanur H.,Oz M.Type, quantity, and Re-Use of residues in the forest products industry in trabzon, Turkey.BioRes,13,2018, Pages 1475-1760.
Tripathi M., Sahu J. N., Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review., 2015, 55, Pages 467-481.
Vassilev S.V.,Baxter D.,Andersen L.K.,Vassileva C.G.An overview of the chemical composition of biomass.Fuel, 89,5,2010, Pages 913-933.
Vasudevan N., Rajaram P. Bioremediation of oil sludge-contaminated soil. Environment International, 2001, 26, Pages 409-411.
Vieira R.S., Lima J.T., J Silva.R.M., Hein P.R.G., Baillères H., Baraúna E.E.P.Small wooden objects using eucalypts sawmill wood waste.BioRes,5,2010, Pages 1463-1472.
Vivian C.,Linwei T., Kin-fai H. Particulate matter from re-suspended mineral dust and emergency cause-specific respiratory hospitalizations in Hong Kong. Atmospheric Environment,Volume 165,2017, Pages 191-197.
Wan H.W. A., Jong B.C., Zainul A.Z., Wan A.A.Sugarcane bagasse as nutrient and support material for Cr(VI)-reducing biofilm.International Biodeterioration & Biodegradation. 2015, Pages 3-10.
Wang N. Y., Shih C. H., Chiueh P. T., Huang Y. F. Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives, 2013.
Wang S., Wang X., Zhang C., Li F., Guo G. L. Bioremediation of oil sludge contaminated soil by landfarming with added cotton stalks. International Biodeterioration & Biodegradation,2016,106,Pages 150-156.
Yang Z. H., Xua R., Zheng Y., Chen T., Zhao L. J., Li M. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Bioresource Technology, 2016, 212, Pages 164-173.
Yee W. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresource Technology, 2015, 196, Pages 1-8.
Ying C., Liang W., Vilma F., Mallavarapu M., Ravi N., Zuliang C. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil. Chemosphere,Volume 175, May 2017, Pages 294-299
Zhanying Z., Lalehvash M., Ian M.O., William O.S.D.Congo Red adsorption by ball-milled sugarcane bagasse.Chemical Engineering Journal. 2011, Pages 122-128.
Zheng C., Wang M., Wang Y., Huang Z. Optimization of biosurfactant-mediated oil extraction from oil sludge.Bioresource Technology. 2012, 110, Pages 338-342.
中華民國經濟部工業局,2015,經濟部事業廢棄物再利用法令及再利用機構運作注意事項,法令宣導說明會簡報。
台灣電力公司,2016,105年化石燃料成本重估之說明。
台灣電力股份有限公司,2017,台電公司燃煤現貨採購價格,台灣資訊開放平台。
司洪濤,2015,廢棄物衍生燃料新技術與應用成功案例介紹,工業安全衛生室。
向文川,2011,城市污水污泥乾化焚燒工藝的碳排放研究,中國西南交通大學市政工程,碩士論文。
江康鈺,張木彬,簡光勵,余崇聖,洪沂潁,2011,燃煤過程重金屬物種形成潛勢預測分析與相態分佈特性之研究,環保署/國科會空污防制科研合作計畫研究成果。
污泥及沉積物中重金屬檢測方法-酸消化法(NIEA M353.01C),中華民國91年11月28日環署檢字第0910083731號公告。
行政院經濟建設委員會,2003,挑戰二OO八:國家發展重點計畫, 台北。
行政院農業委員會,農業統計年報,2016年。
行政院環保署,2015,104 年度有害事業廢棄物之調查與評估專案研究計畫。
何宜倫,2012,半導體及LED廢切削油泥再利用之可行性研究,國立 中央大學環境工程研究所,碩士論文。
何浩、王愛軍、張誌慶、徐磊,2010,新疆油田含油污泥特性研究, 油氣田環境保護,第19卷,第3期,第31~35頁。
吳耿東,2015,生質能源開發技術與展望,國立中興大學。
李得元,2011,煤渣資源回收再利用之成本效益分析,嘉南藥理科技大學環境資源管理系,嘉南學報第三十七期,第182~187頁。
阮慕玲、林燕輝、黃浩梁,2004,事業廢棄物重金屬溶出回收現況概述,工安環保專欄,第22期。
事業廢棄物水分測定方法-間接測定法(NIEA R203.02C),中華民國98
年5月11日環署檢字第0980040837A號公告。
幸福水泥股份有限公司民國102年企業社會責任報告書,2013,幸福水 泥股份有限公司。
林文祥,2009,節能技術與案例介紹,台灣綠色生產力基金會。
林柏伸,2012,燃煤及稻稈純氧燃燒特性之模擬與分析,台灣成功大學機械工程學系,碩士論文。
空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法(NIEA A205.11C), 中華民國101年4月24日環署檢字第1010033956號公告。
張世萱,2011,油泥脫鹽及其轉製廢棄物衍生燃料技術研究,國立台灣大學環境工程研究所,碩士論文。
張加欽,2007,原油儲槽清槽產生槽底有害油泥處理方式邊界初探, 國立屏東科技大學環境工程研究所,碩士論文。
陳洪勇,金余其,崔潔,鄭曉園,鄭耀根,2015,原油罐底油泥的理化特性研究,能源與環境。
勞動部勞動及職業安全衛生研究所,2013,原油污泥自燃特性研究。
經濟部工業局,2015,工業廢棄物清理與資源化資訊網。
萬皓鵬,2014,生質物─後化石世代的重要能源與工業原料,科學發展, 第497期。
萬皓鵬,李宏台,2010,廢棄物衍生燃料的使用,科學發展,第450期。 葛家賢、吳佩芬,固態廢棄物衍生燃料技術簡介,工研院能源與資源研究所。
廖怡慧,2012,稻稈生質炭對重金屬銅、鋅、鎳、鎘、鉛吸附反應之探討,國立中興大學土壤環境科學系所,碩士論文。
碳、氫、硫、氧、氮元素含量檢測方法- 元素分析儀法(NIEA M403.00C),中華民國102年6月7日環署檢字第1020048013號公告。
臺北市政府產業發展局公用事業科,2010,廢棄物衍生燃料概述,廢棄物衍生燃料的使用科學發展,第450期。
劉宗宏、吳紹榮、歐廸政,2009,利用甘蔗渣廢棄物製備含高中孔洞結構比例與高吸附容碳材料之資源回收與利用研究,明志科技大學化學工程系。
劉家佑,陳冠邦,李嘉文,趙怡欽,2015,五節芒草與其生質炭燃燒特性之研究,國立成功大學。
劉廣尉,2011,生質能-生活中的低碳能源。
廢棄物中灰分、可燃分測定方法(NIEA R205.01C),中華民國92年11月17日環署檢字第 0920083144 號公告。
廢 棄物 熱值檢測方法- 燃燒 彈熱卡計 – 絕熱式熱卡計法(NIEA R214.01C),中華民國93年1月19日環署檢字第0930084869號公告。
戴文堅,2013,區域垃圾資源化處理及其管理之研究-以A地區為例,
國立臺北科技大學工程科技研究所,博士論文。
電子全文 電子全文(網際網路公開日期:20230809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔