(3.238.186.43) 您好!臺灣時間:2021/03/02 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳穎
研究生(外文):WU, CHIA-YING
論文名稱:高脂飲食對大鼠自發性身體活動及心臟功能和血糖控制之影響
論文名稱(外文):Effects of High-fat Diet on Spontaneous Physical Activity, Cardiac Function and Glycemic Control in Rats.
指導教授:廖翊宏廖翊宏引用關係
指導教授(外文):LIAO, YI-HUNG
口試委員:蔡秀純陳喬男
口試委員(外文):TSAI, SHIOW-CHEWNCHEN, CHIAO-NAN
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立臺北護理健康大學
系所名稱:運動保健研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:55
中文關鍵詞:身體活動量心臟功能胰島素敏感度瘦素
外文關鍵詞:physical activityleptincardiac functionsinsulin sensitivityHOMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:本研究探討10週高脂飲食介入是否會抑制Sprague Dawley大鼠的自發性身體活動量,心臟功能和血糖控制。方法:[Exp #1]使用16隻雄性Sprague-Dawley大鼠隨機分為標準飲食(SD:10%脂肪)或高脂飲食(HFD:45%脂肪)介入並持續10週。在飲食介入期間,每週記錄體重,水和食物攝入量。除此之外,在9週時測量血糖控制相關指標 (空腹血糖,胰島素,糖化血色素(HbA1c),胰島素耐受性測試(ITT),腹膜內葡萄糖耐受性測試(IPGTT))和自發性身體活動量(SPA),於10週時測量身體組成與激素(瘦素和脂連蛋白)。[Exp #2]使用14隻雄性Sprague-Dawley大鼠,依據Exp #1進行飲食介入,並於第10週測量心臟功能。結果:標準和高脂飼料介入對於自發性身體活動量和心臟功能沒有差異。 而高脂飼料介入顯著造成體重增加和脂肪積累此外也增加瘦素水平,且降低肌肉量。但在兩組介入之間脂聯素水平無顯著差異。然而,與控制組相比,高脂飲食組的血糖,HbA1c和HOMA均顯著升高。另外,高脂組的胰島素耐受性測試之曲線下面積顯著較高,但對腹膜內葡萄糖耐受性測試之曲線下面積沒有差異。結論:結果顯示,過量的卡路里攝入可能在肥胖的發展中扮演更重要的角色,而不是由於缺乏自發性身體活動量所導致。且短期高脂飲食介入大鼠對自發性身體活動量和心臟功能無不良影響。關鍵詞:身體活動,瘦素,心臟功能,胰島素敏感度
Purpose: This study investigates the 10-week high-fat diet would suppress spontaneous physical activity, cardiac functions and glycemic control in Sprague Dawley rats. Methods: [Exp #1] 16 male Sprague-Dawley rats were randomly assigned into: standard diet (SD: 10% fat) or high-fat diet (HFD: 45% fat) for 10-weeks. Throughout the dietary intervention period, body weight, water and food intake were recorded on a weekly basis. In addition, glycemic control (fasting blood glucose, insulin, HbA1c, insulin tolerance test (ITT), intraperitoneal glucose tolerance test (IPGTT)) and spontaneous physical activity (SPA) were measured at the 9th week. The body composition and hormones (leptin, adiponectin) were measured at 10-weeks. [Exp #2] 14 Sprague-Dawley rats were assigned and underwent the identical dietary intervention as Exp #1, and the cardiac function were measured at 10th week. Results: SPA and cardiac functions were not different between the SD and HFD treatments. HFD consumption significantly increased weight gain and fat accumulation also increase in circulating leptin levels. Muscle mass was decreased compared to the control diet. However, blood glucose, HbA1c and HOMA were all significantly elevated for HFD compared to SD. In addition, the AUC for ITT test was significantly greater for the HFD treatment group, but the AUC for IPGTT and adiponectin levels were not significantly different between the treatment. Conclusion: These results suggest that excessive caloric intake may play a more critical role in the development of obesity rather than the lack of SPA. Short-term high-fat diet intervention produced no deletoious effects on spontaneous physical activity and cardiac functions in rats. Keyword: physical activity, leptin, cardiac functions, insulin sensitivity, HOMA

中文摘要 i
ABSTRACT ii
Contents list iii
Figures or Illustrations v
List of Figure v
List of Table v
Chapter 1 Introduction 1
1.1 Background 1
1.2 Aims of study 2
1.3 Research question 2
1.4 Research hypothesis 3
Chapter 2 Literature review 4
2.1 Obesity 4
2.2 High-fat diet and metabolic biomarker profiles 5
2.3 Physical activity 11
2.4 HFD effects on adipokines circulating levels 14
2.5 HFD effects on Cardiac function 14
2.6 Summary 15
Chapter 3 Material and methods 16
3.1 Animal care 16
3.2 Experimental protocol 16
3.3 Physical activity 18
3.4 Body composition 18
3.5 Glycemic control 19
3.6 Blood sample analysis using ELISA (insulin, leptin, adiponectin) 19
3.7 Cardiac function Statistical analyses 20
3.8 Statistical analysis 21
Chapter 4 Results 22
4.1 Body weight 22
4.2 Food and water intake 23
4.3 Body composition 28
4.4 Glycemic control 29
4.5 Metabolic biomarkers 30
4.6 Spontaneous physical activity 31
4.7 Cardiac Function 32
Chapter 5 Discussion 33
Chapter 7 Conclusion 40
Chapter 8 References 41

3.3 Physical activity 17
3.4 Body composition 18
3.5 Insulin tolerance test (ITT) and intraperitoneal glucose tolerance test (IPGTT) 18
3.6 Blood sample analysis using ELISA (insulin, leptin, adiponectin) 19
3.7 Cardiac function Statistical analyses 20
3.8 Statistical analysis 20
Chapter 4 Results 21
4.1 Body weight 21
4.2 Food and water intake 22
4.3 Body composition 27
4.4 Glycemic control 28
4.5 Metabolic biomarkers 29
4.6 Spontaneous physical activity 30
4.7 Cardiac Function 31
Chapter 5 Discussion 32
Chapter 7 Conclusion 39
Chapter 8 References 40

Abdel-Latif, M. (2015). Diethylcarbamazine citrate ameliorates insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. Internayional Immunopharmacology, 29(2), 607-612. doi:10.1016/j.intimp.2015.09.021
Adam, C. L., Thomson, L. M., Williams, P. A., & Ross, A. W. . (2015). Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats. PLOS One, 10(10), e0140392. doi:10.1371/journal.pone.0140392
Al-Dwairi, A., Pabona, J. M. P., Simmen, R. C., & Simmen, F. A. . (2012). Cytosolic malic enzyme 1 (ME1) mediates high fat diet-induced adiposity, endocrine profile, and gastrointestinal tract proliferation-associated biomarkers in male mice. PLOS One, 7(10), e46716. doi:10.1371/journal.pone.0046716
Alissa, E. M., Alnahdi, W. A., Alama, N., & Ferns, G. A. (2015). Insulin resistance in Saudi postmenopausal women with and without metabolic syndrome and its association with vitamin D deficiency. Journal of Clinical and Translational Endocrinology, 2(1), 42-47. doi: 10.1016/i.jcte.2014.09.001
Batacan Jr, R. B., Duncan, M. J., Dalbo, V. J., Buitrago, G. L., & Fenning, A. S. (2016). Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. Journal of Sport and Health Science, 7(1), 109-119. doi: 10.1016/j.jshs.2016.08.001
Cannon, M. V., Silljé, H. H., Sijbesma, J. W., Khan, M. A., Steffensen, K. R., van Gilst, W. H., & de Boer, R. A. (2016). LXRalpha improves myocardial glucose tolerance and reduces cardiac hypertrophy in a mouse model of obesity-induced type 2 diabetes. Diabetologia, 59(3), 634-643. doi:10.1007/s00125-015-3827-x
Casto, R. M., VanNess, J. M., & Overton, J. M. (1998). Effects of central leptin administration on blood pressure in normotensive rats. Neuroscience Letters, 246(1), 29-32. doi: 10.1016/S0304-3940(98)00223-7
Castorena, C. M., Arias, E. B., Sharma, N., & Cartee, G. D. . (2015). Effects of a brief high-fat diet and acute exercise on the mTORC1 and IKK/NF-kappaB pathways in rat skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 40(3), 251-262. doi:10.1139/apnm-2014-0412
Charles, L. E., Burchfiel, C. M., Sarkisian, K., Li, S., Miller, D. B., Gu, J. K., Fekedulegn, D., Violanti, J. M., & Andrew, M. E. . (2015). Leptin, adiponectin, and heart rate variability among police officers. American Journal of Human Biology, 27(2), 184-191. doi:10.1002/ajhb.22636
Edström, E., & Ulfhake, B. (2005). Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell, 4(2), 65-77. doi: 10.1111/j.1474-9728.2005.00145.x
Emanuela, F., Grazia, M., Marco, D. R., Maria Paola, L., Giorgio, F., & Marco, B. (2012). Inflammation as a link between obesity and metabolic syndrome. J Nutrition & Metabolism, 2012. doi: 10.1155/2012/476380
Emoto, M., Nishizawa, Y., Maekawa, K., Hiura, Y., Kanda, H., Kawagishi, T., Shoji, T., Okuno, Y., & Morii, H. . (1999). Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care, 22(5), 818-822. doi: 10.2337/diacare.22.5.818
Estrany, M. E., Proenza, A. M., Gianotti, M., & Lladó, I. (2013). High‐fat diet feeding induces sex‐dependent changes in inflammatory and insulin sensitivity profiles of rat adipose tissue. Cell biochemistry and function, 31(6), 504-510. doi: 10.1002/cbf.2927
Fortuño, A., Rodriguez, A., Gómez-Ambrosi, J., Frühbeck, G., & Diez, J. (2003). Adipose tissue as an endocrine organ: role of leptin and adiponectin in the pathogenesis of cardiovascular diseases. Journal of Physiology and Biochemistry, 59(1), 51-60. doi: 10.1007/BF03179868
François, M., Barde, S., Legrand, R., Lucas, N., Azhar, S., el Dhaybi, M., Guerin, C., Hökfelt, T., Dechelotte, P., Coëffier, M., & Fetissov, S. O. (2016). High-fat diet increases ghrelin-expressing cells in stomach, contributing to obesity. Nutrition, 32(6), 709-715. doi:10.1016/j.nut.2015.12.034
García‐Prieto, C. F., Hernández‐Nuño, F., Rio, D. D., Ruiz‐Hurtado, G., Aránguez, I., Ruiz‐Gayo, M., & Fernández‐Alfonso, M. S. (2015). High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway. Molecular Nutrition & Food Research, 59(3), 520-532. doi:10.1002/mnfr.201400539
Garland, T., Schutz, H., Chappell, M. A., Keeney, B. K., Meek, T. H., Copes, L. E., Wendy, A., Drenowatz, C., Maciel, R. C., Dijk, G., Eisenmann, J. C., & Kotz, C. M. (2011). The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. The Journal of Experimental Biology, 214(2), 206-229. doi: 10.1242/jeb.048397
Hanas, R., & John, W. G. (2014). 2013 Update on the worldwide standardization of the hemoglobin A1c measurement. Pediatric diabetes, 15(3). doi: 10.1111/pedi.12047
Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L., & Sivitz, W. I. (1997). Receptor-mediated Regional Sympathetic Nerve Activation by Leptin. The Journal of Clinical Investigation, 100(2), 270-278. doi: 10.1172/jci119532
Hojhabrimanesh, A., Akhlaghi, M., Rahmani, E., Amanat, S., Atefi, M., Najafi, M., Hashemzadeh M., Salehi S., and Faghih S. (2015). A Western dietary pattern is associated with higher blood pressure in Iranian adolescents. European Journal of Nutrition, 56(1), 399-408. doi: 10.1007/s00394-015-1090-z
Jørgensen, T., Grunnet, N., & Quistorff, B. (2015). One-year high fat diet affects muscle-but not brain mitochondria. Journal of Cerebral Blood Flow & Metabolism, 35(6), 943-950. doi:10.1038/jcbfm.2015.27
Kadir, A., Aizan, N. A., Rahmat, A., & Jaafar, H. Z. (2015). Protective effects of tamarillo (cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats. Journal of obesity, 2015. doi:10.1155/2015/846041
Kaur, J. (2014). A comprehensive review on metabolic syndrome. Cardiology research and practice, 2014, 943162. doi:10.1155/2014/943162
Khairunnuur, F. A., Zulkhairi, A., Hairuszah, I., Azrina, A., Nursakinah, I., Fazali, F., Kamal, M. N. H., Zamree, M. S., & Kamilah, K. A. K. (2010). Hypolipemic and weight reducing properties from Tamarindus indica L. pulp extract in diet-Induced obese rats. International Journal of Pharmacology, 6(3), 216-223. doi: 10.3923/ijp.2010.216.223
Klok, M. D., Jakobsdottir, S., & Drent, M. L. (2006). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Reviews, 8(1), 21-34. doi:10.1111/j.1467-789x.2006.00270.x
Kotz, C. M., Teske, J. A., & Billington, C. J. (2008). Neuroregulation of nonexercise activity thermogenesis and obesity resistance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(3), R699-R710. doi: 10.1152/ajpregu.00095.2007
Krogh-Madsen, R., Thyfault, J. P., Broholm, C., Mortensen, O. H., Olsen, R. H., Mounier, R., Plomgaard P., Hall, G.V., Booth, F.W. & Pedersen, B. K. (2010). A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. Journal of applied physiology, 108(5), 1034-1040. doi: 10.1152/japplphysiol.00977.2009
Kuate, D., Kengne, A. P. N., Biapa, C. P. N., Azantsa, B. G. K., & Muda, W. A. M. B. W. (2015). Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis, 14(1), 50. doi:10.1186/s12944-015-0051-0
Kumar, S. A., Magnusson, M., Ward, L. C., Paul, N. A., & Brown, L. (2015). Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats. Marine Drugs, 13(2), 788-805. doi:10.3390/md13020788
Lahbib, K., Aouani, I., Cavalier, J. F., & Touil, S. (2015). 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats. Chemical Biology & Drug Design, 86(3), 291-301. doi:10.1111/cbdd.12493
Le Couteur, D. G., Solon-Biet, S., Cogger, V. C., Mitchell, S. J., Senior, A., de Cabo, R., Raubenheimer, D., & Simpson, S. J. (2016). The impact of low-protein high-carbohydrate diets on aging and lifespan. Cellular and Molecular Life Sciences, 73(6), 1237-1252. doi:10.1007/s00018-015-2120-y
Liu, M., & Liu, F. (2010). Transcriptional and post-translational regulation of adiponectin. Biochemical Journal, 425(1), 41-52. doi:10.1042/BJ20091045
Maessen, D. E., Brouwers, O., Gaens, K. H., Wouters, K., Cleutjens, J. P., Janssen, B. J., Miyata, T., Stehouwer, C. D., & Schalkwijk, C. G. (2016). Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice. Diabetes, 65(4), 956-966. doi:10.2337/db15-1390
Marques, C., Meireles, M., Norberto, S., Leite, J., Freitas, J., Pestana, D., & Calhau, C. (2016). High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte, 5(1), 11-21. doi:10.1080/21623945.2015.1061723
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419.
Middelkamp, J., van Rooijen, M., Wolfhagen, P., & Steenbergen, B. (2016). The effects of two self-regulation interventions to increase self-efficacy and group exercise behavior in fitness clubs. Journal of Sports Science and Medicine, 15(2), 358-364.
Mistry, S. K., & Puthussery, S. (2015). Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: a systematic review of the evidence. Public Health, 129(3), 200-209. doi: 10.1016/j.puhe.2014.12.004
Mlinar, B., Marc, J., Janež, A., & Pfeifer, M. (2007). Molecular mechanisms of insulin resistance and associated diseases. Clinica Chimica Acta, 375(1-2), 20-35. doi: 10.1016/j.cca.2006.07.005
Nagarajan, V., Gopalan, V., Kaneko, M., Angeli, V., Gluckman, P., Richards, A. M., Kuchel, P. W., & Velan, S. S. (2013). Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy. American Journal of Physiology-Heart and Circulatory Physiology, 304(11), H1495-1504. doi:10.1152/ajpheart.00478.2012
Nicklas, B. J., Gaukstern, J. E., Legault, C., Leng, I., & Rejeski, W. J. (2012). Intervening on spontaneous physical activity to prevent weight regain in older adults: design of a randomized, clinical trial. Contemporary Clinical Trials, 33(2), 450-455. doi:10.1016/j.cct.2011.11.019
Orio, F., Muscogiuri, G., Nese, C., Palomba, S., Savastano, S., Tafuri, D., Colarieti, G., Sala, G. L., Colao, A., & Yildiz, B. O. . (2016). Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 214-219. doi:10.1016/j.ejogrb.2016.08.026
Park, H. S., Park, J. Y., & Yu, R. (2005). Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-a and IL-6. Diabetes Research and Clinical Practice, 69(1), 29-35. doi: 10.1016/j.diabres.2004.11.007
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8(8), 457. doi: 10.1038/nrendo.2012.49
Perez-Leighton, C. E., Boland, K., Teske, J. A., Billington, C., & Kotz, C. M. (2012). Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. American Journal of Physiology-Endocrinology and Metabolism, 303(7), E865-874. doi:10.1152/ajpendo.00119.2012
Perez-Leighton, C. E., Boland, K., Teske, J. A., Billington, C., & Kotz, C. M. (2012). Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. American Journal of Physiology-Endocrinology and Metabolism, 303(7), E865-E874. doi:10.1152/ajpendo.00119.2012
Perez-Leighton, C. E., Grace, M., Billington, C. J., & Kotz, C. M. . (2014). Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiology & Behavior, 135, 104-111. doi: 10.1016/j.physbeh.2014.06.001
Roberts‐Toler, C., O'Neill, B. T., & Cypess, A. M. . (2015). Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring), 23(9), 1765-1770. doi: 10.1002/oby.21134
Schulze, P. C., Kratzsch, J., Linke, A., Schoene, N., Adams, V., Gielen, S., Erbs, S., Moebius-Winkler, S., & Schuler, G. (2003). Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. European Journal of Heart Failure, 5(1), 33-40. doi: 10.1016/s1388-9842(02)00177-0
Schutte, R., Huisman, H. W., Schutte, A. E., & Malan, N. T. (2005). Leptin is independently associated with systolic blood pressure, pulse pressure and arterial compliance in hypertensive African women with increased adiposity: the POWIRS study. Journal of Human Hypertension, 19(7), 535-541. doi: 10.1038/sj.jhh.1001856
Snitker, S., Tataranni, P. A., & Ravussin, E. (2001). Spontaneous physical activity in a respiratory chamber is correlated to habitual physical activity. International Journal of Obesity, 25(10), 1481-1486. doi: 10.1038/sj.ijo.0801746
Song, T. F., Chi, L., Chu, C. H., Chen, F. T., Zhou, C., & Chang, Y. K. (2016). Obesity, cardiovascular fitness, and inhibition function: an electrophysiological study. Frontiers in Psychology, 7, 1124. doi:10.3389/fpsyg.2016.01124
Theriau, C. F., Shpilberg, Y., Riddell, M. C., & Connor, M. K. . (2016). Voluntary physical activity abolishes the proliferative tumor growth microenvironment created by adipose tissue in animals fed a high fat diet. Journal of Applied Physiology (1985), 121(1), 139-153. doi:10.1152/japplphysiol.00862.2015
Ting, W. J., Kuo, W. W., Kuo, C. H., Yeh, Y. L., Shen, C. Y., Chen, Y. H., . . . Huang, C. Y. (2015). Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function. Br J Nutr, 114(5), 706-712. doi:10.1017/S0007114515002469
Vileigas, D. F., de Deus, A. F., da Silva, D. C., de Tomasi, L. C., de Campos, D. H., Adorni, C. S., de Oliveira, S. M., Sant’Ana, P. G., Okoshi, K., Padovani, C.R., & Cicogna, A. C. (2016). Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial beta-adrenergic system and does not compromise cardiac function. Physiological Reports, 4(17), e12914. doi:10.14814/phy2.12914
Wu, T., Shu, Q., Yang, K., Xie, X., Wang, X., Wang, Y., Guo, A., Yuan, N., Zhao, B., Chi, B., Fu, Z., & Wu, Q. (2015). Ameliorating effects of Inonotus obliquus on high fat diet-induced obese rats. Acta biochimica et biophysica Sinica, 47(9), 755-757. doi:10.1093/abbs/gmv073
Yida, Z., Imam, M. U., Ismail, M., Ismail, N., Ideris, A., & Abdullah, M. A. (2015). High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats. Journal of biomedical science, 22(1), 96. doi:10.1186/s12929-015-0211-6
Zaretsky, D. V., Zaretskaia, M. V., & DiMicco, J. A. (2016). Characterization of the relationship between spontaneous locomotor activity and cardiovascular parameters in conscious freely moving rats. Physiology & Behavior, 154, 60-67. dio: 10.1016/j.physbeh.2015.11.014
Zeng, H., Vaka, V. R., He, X., Booz, G. W., & Chen, J. X. (2015). High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. Journal of Cellular and Molecular Medicine, 19(8), 1847-1856. doi:10.1111/jcmm.12556
Zhang, Z. F., Lu, J., Zheng, Y. L., Wu, D. M., Hu, B., Shan, Q., Cheng, W., Li, M. Q., & Sun, Y. Y. (2013). Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. The Journal of Nutritional Biochemistry, 24(6), 1008-1018. doi:10.1016/j.jnutbio.2012.07.009

電子全文 電子全文(網際網路公開日期:20230228)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔