(3.230.143.40) 您好!臺灣時間:2021/04/21 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊雁婷
研究生(外文):YANG, YAN-TING
論文名稱:低氧環境對自行車計時賽運動期間認知表現與大腦血流分佈之影響
論文名稱(外文):Effect of Hypoxia on Cognitive Performance and Prefrontal Cerebral Tissue Blood Flow Distribution During 20-km Cycling Time Trial
指導教授:廖翊宏廖翊宏引用關係
指導教授(外文):LIAO, YI-HUNG
口試委員:蔡秀純陳宗與
口試委員(外文):TSAI, SHIOW-CHWENCHEN, CHUNG-YU
口試日期:2018-06-13
學位類別:碩士
校院名稱:國立臺北護理健康大學
系所名稱:運動保健研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:46
中文關鍵詞:20公里自行車計時賽近紅外線光譜儀可體松反應速度
外文關鍵詞:20 km time-trialNIRScortisolreaction speed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:本研究旨在探討常氧與低氧環境下,進行自行車20公里計時賽過程中,對於左右腦額葉血流變化及認知功能之影響與唾液壓力賀爾蒙之變化。方法:本實驗採交叉平衡次序設計,招募11位健康男性規律運動之耐力運動員分別進行 1) 常氧環境 (N;FiO2 = 20.9%) 及 2) 低氧環境 (H;FiO2 = 16.5%)。兩組皆會進行20公里計時賽,定期測量心跳 (HR)、血氧飽和濃度 (SpO2) 及運動自覺量表 (RPE)。每9和18公里進行反應速度測試,運動前、後收集唾液樣本,且 全程收集近紅外線光譜儀 (NIRS) 腦部前額葉血流數值。使用ANOVA二因子變 異數比較兩種不同介入 (常氧及低氧環境介入) 與設定時間點對不同測試指標 之變化。結果:本研究結果發現 1) 相較於常氧環境,在低氧環境下,血氧飽和 濃度顯著下降及唾液可體松顯著上升;2) 在20公里計時賽過程中,不論在常氧 或低氧環境下,運動表現包含心跳、 或低氧環境下,運動表現包含心跳、 或低氧環境下,運動表現包含心跳、RPE及騎乘時間皆未有顯著差異;且在左右腦前額葉血流方面也皆未有顯著差異;3) 進行20公里計時賽運動過程中,會使反應速度顯著提升,但在常氧環境下,反應速度提升程度顯著高於低氧環境。結 論:本研究結果顯示,在常壓低氧環境 本研究結果顯示,在常壓低氧環境 本研究結果顯示,在常壓低氧環境 (約 2000 公尺海拔高度) 會造成運動期間可體松濃度增加,但20公里自行車總運動時間與腦部血流參數都未明顯受低氧影響。 但是運動期間造成的反應速度提升效應,在低氧環境下似乎會受到減弱。
PURPOSE: The purpose of this study was to investigate the effect of normobaric hypoxia on cognitive function and cerebral blood flow distribution during a 20-km cycling time-trial. METHODS: Using a crossover and counter-balanced design, eleven endurance-trained cycling or triathlon athletes (age: 21.8 ± 1.2 years, VO2max = 59.6 ± 1.3mL/kg/min) were assigned to complete two different trials in randomized orders, including 1) normoxia (N; FiO2 = 20.9%) and 2) hypoxia chamber (H; FiO2 = 16.5%). The subjects cycled 20 km time-trial (TT), and the heart rate (HR), oxyhemoglobin saturation (SpO2) and rating of perceived exertion (RPE) were recorded periodically. Reaction speed test was measured at 9 and 18 km during the ride. Saliva samples were collected at baseline and immediately after exercise for cortisol measurements. The prefrontal cerebral blood flow was continuously measured using NIRS during 20 km TT. Two-way ANOVA with repeated measure was used to compare the differences for all measurements. RESULT: 1) When exercising under hypoxia condition, SpO2 showed a significant decrease and salivary cortisol displayed a significant increase. 2) Exercise performance (HR, SpO2, RPE and exercise time) and the blood flow in prefrontal cerebral tissue were not significantly different during 20 km TT between the two trials. 3) Reaction speed was significantly increased during 20 km TT. However, the enhancement of reaction speed at normoxic exercise was significantly greater than that at hypoxic exercise. CONCLUSION: This investigation demonstrates that despite increases in oxygen deficiency and stress hormone under hypoxia, the exercise performance and prefrontal blood flow were not affected by normobaric hypoxia environment. However, the inducible effect of exercise on promoting reaction speed was reduced in hypoxic conditions.
第一章 緒論
第一節:研究背景................................1
第二節:研究目的及問題...........................3
第三節:研究假設................................3
第二章 文獻探討
第一節:自行車運動之生理變化......................4
第二節:低氧環境對運動表現變化之影響...............5
第三節:低氧環境進行運動對腦部血流變化之影響.......11
第四節:執行特殊目標對於腦部血流特殊分配機制.......12
第三章 研究方法
第一節:受試者..................................16
第二節:實驗設計與流程...........................16
第三節:常壓中等海拔高度模擬環境..................18
第四節:20公里計時賽自行車運動測試................18
第五節:心跳監控、血氧飽和度測量及自覺努力程度評估..19
第六節:大腦額葉組織氧合作用測量..................20
第七節:唾液之壓力賀爾蒙指標......................21
第八節:資料處理與統計分析........................22
第四章 結果
第一節:受試者基本資料、運動表現及唾液可體松濃度....23
第二節:反應速度及正確率..........................24
第三節:左、右腦前額葉血流之變化...................25
第五章 討論.......................................27
第六章 結論與建議..................................31
參考文獻..........................................32


Amann, M., & Kayser, B. (2009). Nervous system function during exercise in hypoxia. High Altitude Medicine & Biology, 10(2), 149-164.
Ando, S., Hatamoto, Y., Sudo, M., Kiyonaga, A., Tanaka, H., & Higaki, Y. (2013). The effects of exercise under hypoxia on cognitive function. PLoS One, 8(5), e63630.
Bahrke, M. S., & Shukitt-Hale, B. (1993). Effects of altitude on mood, behaviour and cognitive functioning. Sports Medicine, 16(2), 97-125.
Beguin, P. C., Joyeux-Faure, M., Godin-Ribuot, D., Levy, P., & Ribuot, C. (2005). Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. Journal of Applied Physiology, 99(3), 1064-1069.
Beidleman, B. A., Fulco, C. S., Staab, J. E., Andrew, S. P., & Muza, S. R. (2014). Cycling performance decrement is greater in hypobaric versus normobaric hypoxia. Extreme Physiology & Medicine, 3 (8).
Beidleman, B. A., Muza, S. R., Fulco, C. S., Jones, J. E., Lammi, E., Staab, J. E., & Cymerman, A. (2009). Intermittent hypoxic exposure does not improve endurance performance at altitude. Medicine and Science in Sports and Exercise, 41(6), 1317-1325.
Billaut, F., Davis, J. M., Smith, K. J., Marino, F. E., & Noakes, T. D. (2010). Cerebral oxygenation decreases but does not impair performance during self-paced, strenuous exercise. Acta Physiologica, 198(4), 477-486.
Bosch, B. M., Bringard, A., Ferretti, G., Schwartz, S., & Igloi, K. (2017). Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study. Neurophotonics, 4(4), 041404.
Brisswalter, J., Arcelin, R., Audiffren, M., & Delignieres, D. (1997). Influence of physical exercise on simple reaction time: effect of physical fitness. Perceptual and Motor Skills, 85, 1019-1027.
Calbet, J. A., Robach, P., & Lundby, C. (2009). The exercising heart at altitude. Cellular and Molecular Life Sciences, 66(22), 3601-3613.
Cao, Y., Vikingstad, E. M., Huttenlocher, P. R., Towle, V. L., & Levin, D. N. (1994). Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9612-9616.
Chou, S. L., Huang, Y. C., Fu, T. C., Hsu, C. C., & Wang, J. S. (2016). Cycling exercise training alleviates hypoxia-impaired erythrocyte rheology. Medicine and Science in Sports and Exercise, 48(1), 57-65.
Crow, T., & Kelman, G. (1973). Psychological effects of mild acute hypoxia. British Journal of Anaesthesia, 45(4), 335-337.
Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., & Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Sports Science and Medicine, 10(1), 175-183.
de Koning, J. J., Bobbert, M. F., & Foster, C. (1999). Determination of optimal pacing strategy in track cycling with an energy flow model. Journal of Science and Medicine in Sport, 2(3), 266-277.
Denison, D., Ledwith, F., & Poulton, E. (1966). Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. Aerospace Medicine, 37(10), 1010-1013.
Dobashi, S., Horiuchi, M., Endo, J., Kiuchi, M., & Koyama, K. (2016). Cognitive function and cerebral oxygenation during prolonged exercise under hypoxia in Healthy Young Males. High Altitude Medicine & Biology, 17(3), 214-221.
Ekblom, B., Huot, R., Stein, E., & Thorstensson, A. T. (1975). Effect of changes in arterial oxygen content on circulation and physical performance. Journal of Applied Physiology, 39(1), 71-75.
Fan, J. L., & Kayser, B. (2016). Fatigue and Exhaustion in Hypoxia: The Role of Cerebral Oxygenation. High Altitude Medicine & Biology, 17(2), 72-84.
Feriche, B., Garcia-Ramos, A., Calderon-Soto, C., Drobnic, F., Bonitch-Gongora, J. G., Galilea, P. A., Padial, P. (2014). Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia. PLoS One, 9(12), e114072.
Gonzalez-Alonso, J., Dalsgaard, M. K., Osada, T., Volianitis, S., Dawson, E. A., Yoshiga, C. C., & Secher, N. H. (2004). Brain and central haemodynamics and oxygenation during maximal exercise in humans. The Journal of Physiology, 557(Pt 1), 331-342.
Gosling, C. M., Donaldson, A., Forbes, A. B., & Gabbe, B. J. (2013). The perception of injury risk and safety in triathlon competition: an exploratory focus group study. Clinical Journal of Sport Medicine, 23(1), 70-73.
Herzog, W., Nigg, B. M., Read, L. J., & Olsson, E. (1989). Asymmetries in ground reaction force patterns in normal human gait. Medicine and Science in Sports and Exercise, 21(1), 110-114.
Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating cortisol levels: the intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587-591.
Horiuchi, M., Dobashi, S., Kiuchi, M., Endo, J., Koyama, K., & Subudhi, A. W. (2016). Reduction in cerebral oxygenation after prolonged exercise in hypoxia is related to changes in blood pressure. Advances in Experimental Medicine and Biology, 876, 95-100.
Jubeau, M., Rupp, T., Temesi, J., Perrey, S., Wuyam, B., Millet, G. Y., & Verges, S. (2016). Neuromuscular fatigue during prolonged exercise in hypoxia. Medicine and Science in Sports and Exercise.
Katayama, K., Ishida, K., Saito, M., Koike, T., & Ogoh, S. (2016). Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise. Experimental Physiology, 101(3), 377-386.
Kelly, L. P., & Basset, F. A. (2017). Acute normobaric hypoxia increases post-exercise lipid oxidation in healthy males. Frontiers in Physiology, 8, 293.
Madsen, P. L., & Secher, N. H. (1999). Near-infrared oximetry of the brain. Progress in Neurobiology, 58(6), 541-560.
Mazzeo, R. S. (2008). Physiological responses to exercise at altitude : an update. Sports Medicine, 38(1), 1-8.
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiology & Behavior, 102(3-4), 421-428.
Millet, G. P., Faiss, R., Brocherie, F., & Girard, O. (2013). Hypoxic training and team sports: a challenge to traditional methods? British Journal of Sports Medicine, 6-7.
Millet, G. P., Roels, B., Schmitt, L., Woorons, X., & Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Medicine, 40(1), 1-25.
Moller, K., Paulson, O. B., Hornbein, T. F., Colier, W. N., Paulson, A. S., Roach, R. C., Knudsen, G. M. (2002). Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude. Journal of Cerebral Blood Flow & Metabolism, 22(1), 118-126.
Moriguchi, Y., Noda, T., Nakayashiki, K., Takata, Y., Setoyama, S., Kawasaki, S., Hanakawa, T. (2017). Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging. Human Brain Mapping, 38(10), 5274-5291.
Neubauer, O., Konig, D., & Wagner, K. H. (2008). Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. European Journal of Applied Physiology, 104(3), 417-426.
Nielsen, H. B., Boushel, R., Madsen, P., & Secher, N. H. (1999). Cerebral desaturation during exercise reversed by O2 supplementation. American Journal of Physiology, 277(3 Pt 2), H1045-1052.
Nybo, L., & Rasmussen, P. (2007). Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exercise and Sport Sciences Reviews, 35(3), 110-118.
O'Toole, M. L., & Douglas, P. S. (1995). Applied physiology of triathlon. Sports Medicien, 19(4), 251-267.
Obminski, Z., & Stupnicki, R. (1997). Comparison of the testosterone-to-cortisol ratio values obtained from hormonal assays in saliva and serum. The Journal of Sports Medicine anad Physical Fitness, 37(1), 50-55.
Panerai, R. B., Deverson, S. T., Mahony, P., Hayes, P., & Evans, D. H. (1999). Effects of CO2 on dynamic cerebral autoregulation measurement. Physiological Measuremaent, 20(3), 265-275.
Papacosta, E., & Nassis, G. P. (2011). Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. Journal of Science and Medicine in Sport, 14(5), 424-434.
Papanicolaou, A. C., Deutsch, G., Bourbon, W. T., Will, K. W., Loring, D. W., & Eisenberg, H. M. (1987). Convergent evoked potential and cerebral blood flow evidence of task-specific hemispheric differences. Electroencephalography and Clinical Neurophysiology, 66(6), 515-520.
Peronnet, F., Thibault, G., & Cousineau, D. L. (1991). A theoretical analysis of the effect of altitude on running performance. Journal of Applied Physiology, 70(1), 399-404.
Powell, J., DiLeo, T., Roberge, R., Coca, A., & Kim, J. H. (2015). Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise. Biology of Sport, 32(2), 91-95.
Raguso, C. A., Guinot, S. L., Janssens, J. P., Kayser, B., & Pichard, C. (2004). Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Current Opinion in Clinical Nutrition & Metabolic Care, 7(4), 411-417.
Rasmussen, P., Dawson, E. A., Nybo, L., van Lieshout, J. J., Secher, N. H., & Gjedde, A. (2007). Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. Journal of Cerebral Blood Flow & Metabolism, 27(5), 1082-1093.
Rupp, T., & Perrey, S. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163.
Schega, L., Peter, B., Brigadski, T., Lessmann, V., Isermann, B., Hamacher, D., & Torpel, A. (2016). Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. Journal of Science and Medicine in Sport. 19(11), 941-945.
Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: implications for fatigue. Journal of Applied Physiology, 104(1), 306-314.
Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: implications for fatigue. Journal of Applied Physiology, 104(1), 306-314.
Sleivert, G. G., & Rowlands, D. S. (1996). Physical and physiological factors associated with success in the triathlon. Sports Medicine, 22(1), 8-18.
Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657-1661.
Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177-183.
Svendsen, I. S., Hem, E., & Gleeson, M. (2016). Effect of acute exercise and hypoxia on markers of systemic and mucosal immunity. European Journal of Applied Physiology, 116(6), 1219-1229.
Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037-1046.
Tsuji, M., Saul, J. P., du Plessis, A., Eichenwald, E., Sobh, J., Crocker, R., & Volpe, J. J. (2000). Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics, 106(4), 625-632.
Wang, J. S., Lin, H. Y., Cheng, M. L., & Wong, M. K. (2007). Chronic intermittent hypoxia modulates eosinophil- and neutrophil-platelet aggregation and inflammatory cytokine secretion caused by strenuous exercise in men. Journal of Applied Physiology, 103(1), 305-314.
Wang, J. S., Wu, M. H., Mao, T. Y., Fu, T. C., & Hsu, C. C. (2010). Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. Journal of Applied Physiology, 109(1), 219-229.
Weavil, J. C., Duke, J. W., Stickford, J. L., Stager, J. M., Chapman, R. F., & Mickleborough, T. D. (2015). Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. European Journal of Applied Physiology, 115(8), 1653-1663.
Wehrlin, J. P., & Hallen, J. (2006). Linear decrease in VO2max and performance with increasing altitude in endurance athletes. European Journal Applied Physiology, 96(4), 404-412.
Wolfel, E. E., Groves, B. M., Brooks, G. A., Butterfield, G. E., Mazzeo, R. S., Moore, L. G. (1991). Oxygen transport during steady-state submaximal exercise in chronic hypoxia. Journal of Applied Physiology, 70(3), 1129-1136.
Woods, D. R., O'Hara, J. P., Boos, C. J., Hodkinson, P. D., Tsakirides, C., Hill, N. E., Mellor, A. (2017). Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia, and genuine high altitude. European Journal Applied Physiology, 117(5), 893-900.
王瑾琦. (1999). 前額葉下皮質迴路與額葉功能測驗之研究. 高雄醫學大學行為科學研究所學位論文, 1.
曲宏義, & 張立群. (2006). 鐵人三項運動特性與訓練. 競技運動, 8(2), 16-19.
吳志銘, 張永政, & 林正常. (2010). 脈動氧血紅素飽和度與高地訓練生理適應之研究. 運動教練科學(18), 13-26.
李昭慶. (2002). 高地訓練的新理念. 中華體育季刊, 16(3), 37-44.
林正常. (1995). 從生理學談運動疲勞. 中華體育季刊, 9(1), 35-43.
林正常. (2011). 高地對固定相對攝氧量強度運動時訓練強度指標的影響. 運動教練科學(23), 89-108.
林韋儒, 洪聰敏, & 黃崇儒. (2009). 高低技能飛鏢投擲者前額中葉 Theta 之差異. 臺灣運動心理學報(15), 1-12.
林嘉志, & 戴松家. (1996). 鐵人三項的運動生理學. 中華體育季刊, 113-121.
邱彥成. (1996). 鐵人三項運動與其運動傷害之探討. 中華體育季刊, 9(4), 105-112.

電子全文 電子全文(網際網路公開日期:20231231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔