(3.238.7.202) 您好!臺灣時間:2021/03/04 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李芃
研究生(外文):LEE, PENG
論文名稱:自由車選手下肢肌電訊號與心肺耐力分析
論文名稱(外文):Analysis of The Lower Limbs Electromyography and Cardiopulmonary Endurance in Cyclists
指導教授:張怡雯張怡雯引用關係徐瑨徐瑨引用關係
指導教授(外文):CHANG, YI-WENHSU, JEAN
口試委員:張怡雯徐瑨陳郁琪
口試委員(外文):CHANG, YI-WENHSU, JEANCHEN, YU-CHI
口試日期:2017-10-23
學位類別:碩士
校院名稱:國立臺灣體育運動大學
系所名稱:運動健康科學系碩士班
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:自由車肌電訊號心跳率攝氧量
外文關鍵詞:cyclingelectromyographyheart rateoxygen uptake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:自由車為一種強度有變化性的運動,以往自由車選手都較重視有氧訓練,但除了有氧能力之外,肌肉力量與自由車運動表現也是息息相關的,目前少有同時探討自由車運動生理參數與生物力學參數的研究,因此本研究目的為探討自由車選手於模擬比賽時,運動表現參數、生理參數與生物力學參數的變化差異。方法:本研究招募男女共10位自由車專項運動員為受試對象,於高功率踏車功率計上進行男子4000公尺/女子3000公尺的模擬比賽,藉由表面肌電訊號收集下肢肌肉活化程度與中位頻率的變化,利用心率帶與氣體分析儀收集受試者的心跳率與攝氧量的變化。結果:a) 心跳率與攝氧量的變化率顯著大於功率與速度變化率,b) 股二頭肌與脛前肌肌肉活化程度變化率顯著大於功率與速度變化率,c) 心跳與攝氧量的變化率顯著大於下肢肌肉活化程度與中位頻率變化率,d) 女性運動員200至1200公尺時的攝氧量與自身的最大攝氧量達顯著差異,男性運動員則是200公尺至1000公尺及2400公尺至4000公尺的攝氧量與自身最大攝氧量達顯著差異。結論:自由車運動期間,生物力學參數的變化會高於運動表現參數的變化,而生理參數的變化皆高於運動表現參數與生物力學參數的變化,女性運動員的攝氧量在運動中後期的變化會維持在較平穩階段,而男性運動員的攝氧量在運動中後期仍會持續增加,因此建議女性3000公尺項目的自由車專項運動員可將有氧訓練加入訓練計畫中,以利更加提升心肺耐力。
Background : Cycling is a sport with variable intensity. In the past, cyclists were more focused on aerobic training. In addition to the aerobic capacity, the muscle strength are intimately related to cycling performance. At present, there is little study regarding physiological parameters and biomechanical parameters in the same time. Therefore, the purpose of this study was to compare performance parameters, physiological parameters and biomechanical parameters during the cycling time trial. Methods: We recruited ten endurance cyclists in this study. Subjects performed 4000 m (male) or 3000m (female) time trail on the ergometer. The EMG signals of lower limb muscles were collected to determine muscle activation and median frequency. The heart rate monitor and the analyzer assembly were used to measure heart rate and oxygen uptake during the cycling time trail. Results: a) The change rate of heart rate and oxygen uptake were significantly higher than power and speed. b) The change rate of biceps femoris muscle activation and the tibialis anterior muscle activation were significantly higher than power and speed. c) The change rate of heart rate and oxygen uptake were significantly higher than the biceps femoris muscle activation and the tibialis anterior muscle activation. d) Significant differences were found between the oxygen uptake at 200 m to 1000 m during the time trail and the maximal oxygen uptake in female cyclists. Significant differences were found between the oxygen uptake at 200 m to 1000 m and 2400 m to 4000 m during the time trail and the maximal oxygen uptake in male cyclists. Conclusion: During cycling, the change in biomechanical parameters was higher than the change in performance parameters, while the change in physiological parameters was higher than the change in performance parameters and biomechanical parameters. The oxygen uptake was steadily maintained in the late phase of cycling in female cyclists, but increased in male cyclists.
中文摘要Ⅰ
英文摘要III
謝誌V
目錄VI
表目錄VIII
圖目錄IX
第壹章 緒論
第一節 研究背景1
第二節 研究動機3
第三節 研究目的與假設5
第貳章 文獻回顧
第一節 自由車競賽簡介6
第二節 踩踏頻率與自由車運動參數之關係7
第三節 功率輸出與自由車運動參數之關係10
第四節 衝刺與自由車運動參數之關係12
第五節 不同介入與自由車運動參數之關係15
第六節 本章總結17
第參章 研究方法與步驟
第一節 研究對象19
第二節 實驗地點與時間19
第三節 實驗儀器與設備20
第四節 實驗流程與步驟25
第五節 資料統計與分析30
第肆章 結果
第一節 受試者基本資料32
第二節 運動表現參數與生理參數之比較34
第三節 運動表現參數與生物力學參數之比較40
第四節 生物力學參數與生理參數之比較48
第五節 不同騎乘距離之攝氧量比較52
第伍章 討論
第一節 運動表現參數變化與生理/生物力學參數變化之探討55
第二節 生理參數變化與生物力學參數變化之探討58
第三節 不同騎乘距離攝氧量之探討60
第四節 研究限制62
第陸章 結論與未來研究發63
參考文獻 65
附錄一71

周松緯、楊秉祥(2009)。室外騎乘自行車阻力與功率輸出及肌肉活動情形之相互關係(未出版碩士論文)。國立交通大學,新竹市。
Argentin, S., Hausswirth, C., Bernard, T., Bieuzen, F., Leveque, J. M.,Couturier, A., & Lepers, R. (2006).
Relation between preferred and optimal cadences during two hours of cycling in triathletes. British Journal of Sports Medicine, 40(4), 293-298.
Baum, B. S., & Li, L. (2003). Lower extremity muscle activities during cycling are influenced by load and frequency. Journal of Electromyography and Kinesiology, 13(2), 181-190.
Billaut, F., Basset, F. A., & Falgairette, G. (2005). Muscle coordination changes during intermittent cycling sprints. Neuroscience letters, 380(3), 265-269.
Billaut, F., Basset, F. A., Giacomoni, M., Lemaitre, F., Tricot, V., & Falgairette, G. (2006). Effect of High-Intensity Intermittent Cycling Sprints on Neuromuscular Activity.
International Journal of Sports Medicine, 27(01), 25-30.
Bini, R. R., Carpes, F. P., Diefenthaeler, F., Mota, C. B., Guimarães, A. C. S., & Grupo de Estudo e Pesquisa em Ciclismo. (2008).
Physiological and electromyographic responses during 40-km cycling time trial: Relationship to muscle coordination and performance. Journal of Science and Medicine in Sport, 11(4), 363-370.
Calbet, J. A., De Paz, J. A., Garatachea, N., De Vaca, S. C., & Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. Journal of Applied Physiology, 94(2), 668-676.
Caputo, F., Mello, M. T., & Denadai, B. S. (2003). Oxygen Uptake Kinetics and Time to Exhaustion in Cycling and Running: a Comparison Between Trained and Untrained Subjects.
Archives of Physiology and Biochemistry, 111(5), 461-466.
Fernández-Pena, E., Lucertini, F., & Ditroilo, M. (2009). A maximal isokinetic pedalling exercise for EMG normalization in cycling.
Journal of Electromyography and Kinesiology, 19(3), e162-e170.
Fisher, B. E., Wu, A. D., Salem, G. J., Song, J., Lin, C. H. J., Yip, J., ... & Petzinger, G. (2008).
The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson's disease.
Archives of Physical Medicine and Rehabilitation, 89(7), 1221-1229.
Hautier, C. A., Arsac, L. M., Deghdegh, K., Souquet, J., Belli, A., & Lacour, J. R. (2000). Influence of fatigue on EMG/force ratio and cocontraction in cycling.
Medicine & Science in Sports & Exercise, 32(4), 839-843.
Hettinga, F. J., De Koning, J. J., & Foster, C. (2009). VO2 Response in Supramaximal Cycling Time Trial Exercise of 750 to 4000 m. Medicine & Science in Sports & Exercise, 41(1), 230-236.
Hue, O., Le Gallais, D., Chollet, D., Boussana, A., & Prefaut, C. (1997). The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. European Journal of Applied Physiology and Occupational Physiology, 77(1), 98-105.
Lepers, R., Hausswirth, C., Maffiuletti, N., Brisswalter, J., & Van Hoecke, J. (2000). Evidence of neuromuscular fatigue after prolonged cycling exercise.
Medicine & Science in Sports & Exercise, 32(11), 1880-1886.
Lucia, A., Hoyos, J., & Chicharro, J. L. (2000). The slow component of VO2 in professional cyclists. British Journal of Sports Medicine, 34(5), 367-374.
Lucia, A., Hoyos, J., & Chicharro, J. L. (2001). Preferred pedalling cadence in professional cycling. Medicine & Science in Sports & Exercise, 33(8), 1361-1366.
Lucia, A., Hoyos, J., PÉrez, M., Santalla, A., & Chicharro, J. L. (2002). Inverse relationship between VO2max and economy/efficiency in world-class cyclists.
Medicine & Science in Sports & Exercise, 34(12), 2079-2084.
Macintosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.
Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. . Medicine and Science in Sports and Exercise, 27(2), 217-225.
Marsh, A. P., Martin, P. E., & Foley, K. O. (2000). Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.
Medicine & Science in Sports & Exercise, 32(9), 1630-1634.
Menaspà, P., Martin, D. T., Victor, J., & Abbiss, C. R. (2015). Maximal Sprint Power in Road Cyclists After Variable and Nonvariable High-Intensity Exercise.
The Journal of Strength & Conditioning Research, 29 (11), 3156–3161.
Pearcey, G. E., Murphy, J. R., Behm, D. G., Hay, D. C., Power, K. E., & Button, D. C. (2015).
Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent‐sprints on a cycle ergometer. Muscle & Nerve, 51(4), 569–579.
Rønnestad, B. R., Hansen, J., Hollan, I., & Ellefsen, S. (2015). Strength training improves performance and pedaling characteristics in elite cyclists.
Scandinavian Journal of Medicine & Science in Sports, 25(1), e89–e98.
Sarre, G., Lepers, R., Maffiuletti, N., Millet, G., & Martin, A. (2003). Influence of cycling cadence on neuromuscular activity of the knee extensors in humans.
European Journal of Applied Physiology, 88(4), 476-479.
Saunders, M. J., Evans, E. M., Arngrimsson, S. A., Allison, J. D., Warren, G. L., & Cureton, K. J. (2000). Muscle activation and the slow component rise in oxygen uptake during cycling. Medicine & Science in Sports & Exercise, 32(12), 2040-2045.
Sawyer, B. J., Stokes, D. G., Womack, C. J., Morton, R. H., Weltman, A., & Gaesser, G. A. (2014).
Strength training increases endurance time to exhaustion during high-intensity exercise despite no change in critical power. The Journal of Strength & Conditioning Research, 28(3), 601–609.
Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., ... & Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. Journal of Histochemistry & Cytochemistry, 48(5), 623-629.
Stebbins, C. L., Moore, J. L., & Casazza, G. A. (2014). Effects of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial.
Journal of Sports Science & Medicine, 13(1), 114-119.
Stone, M. R., Thomas, K., Wilkinson, M., Gibson, A. S. C., & Thompson, K. G. (2011).
Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. European Journal of Applied Physiology 111(8), 1807-1813.
Tanner, R., & Gore, C. (2012). Physiological Tests for Elite Athletes 2nd Edition. Lower Mitcham, Australia : Human Kinetics
Tordi, N., Perrey, S., Harvey, A., & Hughson, R. L. (2003). Oxygen uptake kinetics during two bouts of heavy cycling separated by fatiguing sprint exercise in humans.
Journal of Applied Physiology, 94(2), 533-541.
Winter, D. A. (2009). Biomechanics and motor control of human movement. Ontario, Canada: John Wiley & Sons.



電子全文 電子全文(網際網路公開日期:20221120)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔