跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林品岑
研究生(外文):LIN, PIN-TSEN
論文名稱:3D列印技術應用於河川底棲昆蟲模型教具製作對水環境巡守隊辨識技能提升之影響
論文名稱(外文):Effects for Using 3D Printing Technology to Manufacture Aquatic Insect Teaching Aids on Water Patrol Team’s Identification Skill
指導教授:白子易白子易引用關係
指導教授(外文):PAI, TZU-YI
口試委員:吳瑞賢陳慶和陳世偉白子易
口試委員(外文):WU, RAY-SHYANCHEN, CHING-HOCHEN, SHI-WEIPAI, TZU-YI
口試日期:2017-12-02
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系環境教育及管理碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:3D列印河川底棲昆蟲水環境巡守隊
外文關鍵詞:3D printingaquatic lifewater patrol team
相關次數:
  • 被引用被引用:2
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本研究嘗試以3D列印機製作河川底棲昆蟲教具,將河川底棲昆蟲辨識技能融入於教具中,以瞭解水環境巡守隊員在志工講習訓練時學習效果,並分析水環境巡守隊員在上課前、上課後對河川底棲昆蟲辨識的技能差異,以提供政府機關於規劃水環境巡守隊員講習課程之參考。
本研究選定臺中市水環境巡守隊員共111位為研究對象,實驗組分為三組,每組選定一梯次河川巡守隊員講習課程進行實驗。第一組實驗組進行河川底棲昆蟲課程教學輔以3D列印機輸出之河川底棲昆蟲教具,第二組(對照組一)僅進行河川底棲昆蟲課程教學,第三組(對照組二)則不介入任何教學教材及教具。研究工具使用「3D 繪圖軟體」與「3D 列印機」設計輸出之教具,搭配「河川底棲昆蟲辨識技能教材」及「河川底棲昆蟲辨識技能問卷」。研究資料以描述性統計、獨立樣本T 檢定及成對樣本T 檢定進行分析。
比較實施河川底棲昆蟲辨識技能問卷發現:未實施課程及操作教具之水環境巡守隊講習梯次,明顯沒有任何學習成效。有進行河川底棲昆蟲辨識技能教材則有明顯學習上的提升,尤其以有輔以3D列印機設計輸出之河川底棲昆蟲教具的水環境巡守隊講習梯次學習效果更有高於其他梯次。最後依據研究結果,對以3D列印機製作河川底棲昆蟲教具及未來研究提出具體建議。

This study attempted to use 3D printer to produce the river aquatic life artifacts as teaching tools, and integrate the river aquatic life identification skills into the teaching course, so that the water patrol team attendants could increase their learning abilities during the volunteer training, then analyze the water patrol team knowledge for identification of the river aquatic life before and after training, to provide government agencies for planning the water patrol team classes.
In this study, a total of 111 water patrol team in Taichung City were selected as the research object, and the experiment was divided into three groups. Each group selects a team to study the course. The first groups of experimental group proceed the course of teaching river aquatic life, and combined with 3D printer. The second groups only proceed the river benthic insects teaching. The third group used no teaching materials and teaching aids. The research tools use the "3D graphics Software" and "3D Printer" to design their own output teaching aids, as well as the "River Benthic Insect Identification Skills Teaching Materials" and the "River Benthic Insect Identification Skills Questionnaire" as a research tool. The data were analyzed by descriptive statistics, independent sample T test and paired sample T test.
Comparison of the implementation of the river benthic life identification skills questionnaire found: not the implementation of the course and operation of the teaching aids of the water patrol team to learn echelon, obviously no learning effect. There is a significant improvement in learning materials for the identification of river benthic life. In particular, the water patrol team has a higher learning effect than other echelons, Finally, on the basis of the research results, it proposed the 3D printing machine suggestions on the teaching aids for the river aquatic life artifacts and future research .

目錄
第一章 緒論.....................1
第一節 研究背景與動機..............1
第二節 研究目的...................5
第三節 名詞解釋...................6
第四節 研究對象與限制..............7
第二章 文獻回顧..................8
第一節 環境教育回顧................8
第二節 水環境巡守隊發展回顧.........9
第三節 河川底棲昆蟲................12
第四節 3D列印技術回顧..............20
第五節 教具發展回顧................22
第三章 研究方法及研究設備.........25
第一節 研究架構與流程..............25
第二節 研究範圍及對象..............28
第三節 研究工具....................28
第四節 資料處理與分析..............35
第四章 結果與討論................36
第一節 3D列印機教具製作...........36
第二節 河川底棲昆蟲問卷及教案編制..41
第三節 研究對象之背景變項分析......48
第四節 三組前測資料分析...........57
第五節 各組前後測資料分析.........60
第六節 三組後測資料分析...........63
第五章 結論與建議.................66
第一節 結論......................66
第二節 建議......................68
參考文獻 ..........................69
附錄一 河川底棲昆蟲辨識技能專家學者審查問卷..78
附錄二 97年水環境巡守隊員教育手冊....83
附錄二 活動教案.....................101
附錄三 臺中市政府環境保護局水環境巡守隊教育講習志工培訓課程表..106
附錄四 河川底棲昆蟲辨識技能教材......103
附錄五 上課照片分享.................111


王莉萍(2009)。環境議題融入「水中的昆蟲」教學對國小四年級學 長環境學習成就之影響。國立臺北教育大學,臺北市
王齡國(2007)。烏溪之水棲昆蟲資源調查及水質監測研究。國立嘉義大學,嘉義縣。
田志仁、吳承恩、黃顯宗、汪碧涵。2004。以水棲昆蟲為指標昆蟲評估台北外雙溪水質。特有昆蟲研究保育中心自然保育季刊45:38-46。
林新懷(2014)。應用六標準差設計於3D列印之商品開發。大同大學,臺北市。
林煒荃(2016)。國小學童透過智慧行動裝置進行水棲昆蟲大蒐集電子書之學習成效評估。國立台中教育大學,臺中市。
徐崇斌、楊平世。1997。應用水棲昆蟲昆蟲指標評估基隆河水質之研究。中華昆蟲17(3):152-161。
郭春在(2006)。從幼兒身心發展觀點探討幼兒玩具設計要素之研究。南華大學應用藝術與設計學報,1,53-62。
郭紹群。1995。花蓮縣美崙溪水棲昆蟲與昆蟲指標之研究。國立東華大學自然資源管理研究所碩士論文。花蓮。61 頁。
郭鍾秀、劉忠裕。2002。利用附著性矽藻作為鯉魚潭水庫水質之昆蟲指標之可行性研究。第八屆海峽兩岸環境保護研討會論文集。交通大學,新竹。175~180 頁。
郭鍾秀、鄭銘日、張夢帆。2004。利用水棲昆蟲評估烏溪水質—季節變化之影響。第十七屆環境規劃與管理研討會。中華民國環境工程學會第十六屆年會暨學術
研討會論文摘要集。國立成功大學,台南。
陳嘉皇(2006)。遊戲與玩具融入數學教學-一個範例分享。2006數學創意教學研討會論文集。崑山科技大學,臺南市。
林秀姿(2013)。實體教具與虛擬教具在數學學習態度成效之研究-以國小六年級數學領域為例。南華大學,嘉義縣。
陳品臻(2013)。探討臺灣地區國小自然科教師的坤從概念與教學策略。國立臺北教育大學,臺北市。
楊平世(1988)。昆蟲的生活。臺北市:臺灣省立博物館出版。
林信輝(2003)。應用水生昆蟲科級昆蟲指標(FBI)評估溪流水質之研究。水土保持學報,35,425-438。
楊平世(2009)。臺灣昆蟲資源產業現況及發展。昆蟲與昆蟲多樣性保育研討會專刊,141-147。臺北市:行政院農委會林務局,臺灣昆蟲學會。
楊平世、黃國靖。1992。淡水河系之水棲昆蟲及指標昆蟲研究。大自然36:106-113。
陳永全(2012)。國小自然科「認識昆蟲」單元之虛擬實境式悅趣學習設計與成效研究。國立新竹教育大學,新竹市。
陳韋成(2016)。蜻蛉目昆蟲資源調查於生態旅遊之應用-以宜蘭縣頭城農場為例。臺北市立大學,臺北市。
莊雅玲(2012)。彰化縣托兒所教保人員教具使用現況與需求研究。國立新竹教育大學,新竹市。
童兆迪(2016)。3D列印技術應用於風力能源教具製作對國小學童再生能源知識學習成效評估之研究。國立臺中教育大學,臺中市。
鄧竹雲(2012)。運用數位典藏資源融入國小四年級昆蟲單元教學活動對學童學習成效之研究。國立臺北教育大學,臺北市。
賴宜吟(2013)。實施昆蟲教具教學活動對國小中年級學童昆蟲知識、態度與行為之研究。國立台中教育大學,臺中市。
謝孟鋼(2015)。融入河川巡守隊於大學通識教育環境課程策略之效益初探。長榮大學,臺南市。
黃國靖(1994)。景美溪水棲昆蟲生態及昆蟲指標研究。國立臺灣大學植物病蟲害研究所博士論文。台北。150 頁。
行政院環境保護署(2016)。推動水環境巡守隊培力及增能教育訓練計畫期末報告(定稿本)。臺北市:行政院環境保護署。
行政院環境保護署環境檢驗所(2011)。河川底棲水生昆蟲採樣方法。中華民國100年12月14日環署檢字第1000109874號公告修正為NIEA E801.31C。臺北市:行政院環境保護署。
Chovanec,A.(2000).Dragonflies(Insecta:Odonata)as indicators of the ecological integrity of aquatic systems-a new assessment approach.Verh.Internat.Verein.Limnol,27,887-890.
Christopher,B.(2013)3D Printiog? The next Industrial Revolution,3D Print Headquarters,27th April.
Hilsenhoff, W. L. 1982. Using a biotic index to evaluate water quality in streams. Tech.57Bull. Wisconsin Dept. Nat. Resour. 132. 22pp.
Hilsenhoff, W. L. 1987. An improved biotic index of organic stream pollution. The Great Lakes Entomol. 21:9-13.
Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 7(1):65-68.
Hilsenhoff, W. L. 1998. A modification of the biotic index of organic stream pollution to remedy problems and permit its use throughout the year. Great Lakes Entomol. 31:1-12.
Kolkwitz, R., and M. Marsson. 1908. Ökologie der planzlichen Saprobien. Ber. Dtsch.Bot. Ges. 26: 505-519.
Kolkwitz, R., and M. Marsson. 1909. Ökologie der tierische Saprobien. Beiträge zurLehre von der biologische Gewässerbeurteilung. Int. Rev. Hydrobiol. 2: 126-152.
Pai T.Y., Ouyang C.F., Su J.L., & Leu H.G. (2000). Modelling the steady-state effluent characteristics of the TNCU process with ASM2d under varied SRT conditions. Journal of the Chinese Institute of Environmental Engineering, 10(1), 35-42.
Pai T.Y., Ouyang C.F., Liao Y.C., & Leu H.G. (2000). Oxygen transfer in gravity flow sewer. Water Science and Technology, 42(3-4), 417-422.
Pai T.Y., Ouyang C.F., Su J.L., & Leu H.G. (2001a). Modeling the stable effluent qualities of the A2O process with Activated Sludge Model 2d under different return supernatant. Journal of the Chinese Institute of Engineers, 24(1), 75-84.
Pai T.Y., Ouyang C.F., Su J.L., & Leu H.G. (2001b). Modelling the steady-state effluent characteristics of the TNCU process under different return mixed liquid. Applied Mathematical Modelling, 25(12), 1025-1038.
Pai T.Y., Chuang S.H., Tsai Y.P., & Leu H.G. (2004). Development of two-stage nitrification/denitrification model (TaiWan Extension Activated sludge model NO.1) for BNR process. Journal of the Chinese Institute of Environmental Engineering, 14(1), 51-60.
Pai T.Y., Tsai Y.P., Chou Y.J., Chang H.Y., Leu H.G., & Ouyang C.F. (2004). Microbial kinetic analysis of three different types of EBNR process. Chemosphere, 55(1), 109-118.
Pai T.Y., Chuang S.H., Tsai Y.P., & Ouyang C.F. (2004c). Modelling a combined anaerobic/anoxic oxide and rotating biological contactors process under dissolved oxygen variation by using an activated sludge - biofilm hybrid model. Journal of Environmental Engineering-ASCE, 130(12), 1433-1441.
Pai T.Y. (2007). Modeling nitrite and nitrate variations in A2O process under different return oxic mixed liquid using an extended model. Process Biochemistry, 42(6), 978-987.
Pai T.Y., Hanaki K., Ho H.H., & Hsieh C.M. (2007). Using grey system theory to evaluate transportation on air quality trends in Japan, Transportation Research Part D: Transport and Environment, 12 (3), 158-166.
Pai T.Y., Tsai Y.P., Lo H.M., Tsai C.H., & Lin C.Y. (2007). Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent, Computers & Chemical Engineering, 31(10), 1272-1281.
Pai T.Y. (2008). Gray and neural network prediction of effluent from the wastewater treatment plant of industrial park using influent quality. Environmental Engineering Science, 25(5), 757-766.
Pai T.Y., Chuang S.H., Ho H.H., Yu L.F., Su H.C., & Hu H.C. (2008a). Predicting performance of grey and neural network in industrial effluent using online monitoring parameters. Process Biochemistry, 43(2), 199-205.
Pai T.Y., Chuang S.H., Wan T.J., Lo H.M., Tsai Y.P., Su H.C., Yu L.F., Hu H.C., & Sung P.J. (2008b). Comparisons of grey and neural network prediction of industrial park wastewater effluent using influent quality and online monitoring parameters. Environmental Monitoring and Assessment, 146(1-3), 51-66.
Pai T.Y., Chiou R.J., & Wen H.H. (2008). Evaluating impact level of different factors in environmental impact assessment for incinerator plants using GM (1, N) model. Waste Management, 28(10), 1915-1922.
Pai T.Y., Wang S.C., Lo H.M., Chiang C.F., Liu M.H., Chiou R.J., Chen W.Y., Hung P. S., Liao W.C., & Leu H.G. (2009a). Novel modeling concept for evaluating the effects of cadmium and copper on heterotrophic growth and lysis rates in activated sludge process. Journal of Hazardous Materials, 166(1), 200-206.
Pai T.Y., Wan T.J., Hsu S.T., Chang T.C., Tsai Y.P., Lin C.Y., Su H.C., & Yu L.F. (2009c). Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 33(7), 1272-1278.
Pai T.Y., Wang S.C., Chiang C.F., Su H.C., Yu L.F., Sung P.J., Lin C.Y., & Hu H.C. (2009d). Improving neural network prediction of effluent from biological wastewater treatment plant of industrial park using fuzzy learning approach. Bioprocess and Biosystems Engineering, 32(6), 781-790.
Pai T.Y., Chang H.Y., Wan T.J., Chuang S.H., & Tsai Y.P. (2009). Using an extended activated sludge model to simulate nitrite and nitrate variations in TNCU2 process. Applied Mathematical Modelling, 33(11), 4259-4268.
Pai T.Y., Wang S.C., Lin C.Y., Liao W.C., Chu H.H., Lin T.S., Liu C.C., & Lin S.W. (2009b). Two types of organophosphate pesticides and their combined effects on heterotrophic growth rates in activated sludge process. Journal of Chemical Technology and Biotechnology, 84(12), 1773-1779.
Pai T.Y., Wan T.J., Tsai Y.P., Tzeng C.J., Chu H.H., Tsai Y.S., & Lin C.Y. (2010a). Effect of sludge retention time on biomass and kinetic parameter of two nitrifying species in anaerobic/oxic process. CLEAN-Soil Air Water, 38(2), 167-172.
Pai T.Y., Chiou R.J., Tzeng C.J., Lin T.S., Yeh S.C., Sung P.J., Tseng C.H., Tsai C.H., Tsai Y.S., Hsu W.J., & Wei Y.L. (2010b). Variation of biomass and kinetic parameter for nitrifying species in TNCU3 process at different aerobic hydraulic retention time. World Journal of Microbiology & Biotechnology, 26(4), 589-597.
Pai T.Y., Huang J.D., Wang S.C., Chang D.H., Huang K.J., Lee C.C., Lin S.R., Tseng C.H., Sung P.J., & Leu H.G. (2010c). Evaluate the establishment site of ecological water purification processes in Dali River using QUAL2K. Suatainable Environment Research, 20(4), 239-243.
Pai T.Y., Chen C.L., Chung H., Ho H.H., & Shiu T.W. (2010). Monitoring and assessing variation of sewage quality and microbial functional groups in a trunk sewer line. Environmental Monitoring and Assessment, 171(1-4), 551-560.
Pai T.Y., Lin K.L., Shie J.L., Chang T.C., & Chen B.Y. (2011). Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network. Waste Management & Research, 29(3), 284-293 (2011).
Pai T.Y., Ho C.L., Chen S.W., Lo H.M., Sung P.J., Lin S.W., Lai W.J., Tseng S.C., Ciou S.P., Kuo J.L., & Kao J.T. (2011a). Using seven types of GM (1, 1) model to forecast hourly particulate matter concentration in Banciao City of Taiwan. Water, Air, and Soil Pollution, 217(1-4), 25-33.
Pai T.Y., Yang P.Y., Wang S.C., Lo H.M., Chiang C.F., Kuo J.L., Chu H.H., Su H.C., Yu L.F., Hu H.C., & Chang Y.H. (2011b). Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Applied Mathematical Modelling, 35(8), 3674-3684.
Pai T.Y., Shyu G.S., Chen L., Lo H.M., Chang D.H., Lai W.J., Yang P.Y., Chen C.Y., Liao Y.C., & Tseng S.C. (2013). Modelling transportation and transformation of nitrogen compounds at different influent concentrations in sewer pipe. Applied Mathematical Modelling, 37(3), 1553-1563.
Pai T.Y., Hanaki K., Su H.C., & Yu L.F. (2013). A 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approach. CLEAN-Soil Air Water, 41(8), 729-736.
Pai T.Y., Hanaki K., & Chiou R.J. (2013). Forecasting hourly roadside particulate matter in Taipei County of Taiwan based on first-order and one-variable grey model. CLEAN-Soil Air Water, 41(8), 737-742.
Pai T.Y., Lo H.M., Wan T.J., Wang S.C., Yang P.Y., & Huang Y.T. (2014). Behaviors of biomass and kinetic parameter for nitrifying species in A2O process at different sludge retention time. Applied Biochemistry and Biotechnology, 174 (8), 2875-2885.
Pai T.Y., Lo H.M., Wan T.J., Chen L., Hung P.S., Lo H.H., Lai W.J., & Lee H.Y. (2015). Predicting air pollutant emissions from a medical incinerator using grey model and neural network. Applied Mathematical Modelling, 39 (5-6), 1513-1525.
Tung Y.T., & Pai T.Y. (2015). Water management for agriculture, energy and social security in Taiwan. CLEAN-Soil Air Water, 43 (5), 627-632.
Chen L., & Pai T.Y. (2015). Comparisons of GM (1, 1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan. Atmospheric Pollution Research, 6, 572-580.
Pai T.Y., Wang S.C., Lo H.M., Chen L., Wan T.J., Lin M.R., Lin C.Y., Yang P.Y., Lai W.J., Wang Y.H., & Lu T.H. (2017). A simulation of sewer biodeterioration by analysis of different components with a model approach. International Biodeterioration & Biodegradation, 125, 37-44.
Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers--Benthic macroinvertebrates and fish: U.S. Environmental Protection Agency, Office of Water, Washington, D.C.,EPA-440/4-89-001, 190 pp.
中央研究院昆蟲多樣性研究中心(2015)。臺灣物種名錄-昆蟲綱蜻蛉目【文字資料】臺灣昆蟲多性資訊入口網。取自http://taibnet.sinica.edu.tw/AjaxTree/allkingdom.php?
方世維(2014)。3D列印成型技術簡介。取自http://goo.gl/t50CZX
潘光道(2014)。蜻蛉目昆蟲教學模組織設計與教學應用【文字資料】。取自http:sites.google.com/site/dragnofly3211320/
國立然科學博物館-自然與人文數位博物館(2016)。動物學昆蟲類【文字資料】。取自http://digimuse.nmns.edu.tw/Default.aspx?Domin=z&tabid=79&Field=i0&ContentType=Study&FieldName=&ObjectId=&Subject=&Language=CHI
行政院環境保護署-Ecolife清淨家園顧厝邊綠色生活網。97年水環境巡守隊員教育手冊。取自 https://ecolife.epa.gov.tw/conservation/default.aspx
行政院環境保護署(2016)。河川昆蟲指標(水棲昆蟲)。取自https://www.epa.gov.tw/public/Data/4561683271.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top