王毓婕(2016)。運用幾何軟體Cabri 3D與實體積木教具教學對國小二年級學生學習空間旋轉概念之影響。臺灣數學教育期刊,3(1),19-54。取自:
http://tame.tw/old/forum.php?mod=viewthread&tid=246&extra=page%3D1.
宋其鴻(2016)。國小六年級學生對表面積與體積的後設認知之研究。臺北巿立大學數學系數學教育碩士論文,臺北。沈佑霖(2003)。國小六年級學生體積概念之研究。國立屏東師範學院數理教育研究所碩士論文,屏東。李文貞(2006)。幼兒幾何形體概念發展研究。國立臺灣師範大學人類發展與家庭研究所碩士論文,臺北。李函(2016)。學習軌道理論融入國小柱體與錐體概念教學實驗之研究。國立臺中教育大學教師專業碩士學位學程碩士論文,臺中。李源順(2013)。數學這樣教國小數學感教育。臺北:五南圖書出版股份有限公司。
吳碧智(2014)。圓形複合圖形面積計算-利用「假設性學習軌道」理論設計教學實驗。國立臺中教育大學數學教育學系國小教師在職進修教學碩士班碩士論文,臺中。林吟霞、王彥方(2009)。情境學習在課程與教學中的運用。北縣教育,69,69-72。林芳姬、姚如芬(2005)。積木怎麼不見了~體積空間能力的教學。科學教育研究與發展季刊。取自:https://scholar.google.com/scholar?q=related:
t50-NAPri_kJ:scholar.google.com/&hl=zh-TW&as_sdt=0,5。
林福來(2010)。數學臆測活動的設計、教學與評量:總計畫。載於楊德清(主編),
行政院國家科學委員會專題研究計畫成果報告-數學教育學門專題研究成果討論會(B冊,89-100頁)。嘉義:國立嘉義大學。
吳德邦、鄭佳昇(2001)。由表徵觀點初探國小兒童立體幾何概念之研究。文章發表於中華民國第十七屆科學教育學術研討會暨第十四屆科學教育學會年會十二月七日。
南一書局(2017a)。南一版國小數學課本第一冊。臺南:南一出版社。
南一書局(2017b)。南一版國小數學教師手冊第一冊。臺南:南一出版社。
南一書局(2016a)。南一版國小數學課本第二冊。臺南:南一出版社。
南一書局(2016b)。南一版國小數學教師手冊第二冊。臺南:南一出版社。
翁子婕(2016)。學習軌道融入一年級平面圖形概念教學實驗之研究。國立臺中教育大學數學教育學系碩士論文,臺中。莊月嬌(2006)。九年一貫課程小學幾何教材內容分析研究。國立台北師範學院數理教育研究所碩士論文,臺北。教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。臺北:教育部。
張英傑(2001)。兒童幾何形體概念之初步探究。國立台北師範學院學報,14,491-528。台北市:國立台北師範學院。
張春興(2016)。教育心理學:三化取向的理論與實踐。臺北:東華書局。
張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27,152-200。康軒文教事業(2017a)。康軒版國小數學課本第一冊。臺北:康軒文教事業。
康軒文教事業(2017b)。康軒版國小數學教師手冊第一冊。臺北:康軒文教事業。
康軒軒文教事業(2016a)。康軒版國小數學課本第二冊。臺北:康軒文教事業。
康軒軒文教事業(2016b)。康軒版國小數學教師手冊第二冊。臺北:康軒文教事業。
教育部(2008)。97年國民中小學九年一貫課程綱要:數學領域。臺北巿:教育部。
陳和貴(2002)。國小五年級學生分數概念學習表現及易犯錯誤類型之比較研究。屏東師師數學教育研究所項士論文,屏東。
陳炳文(2010)。運用多點觸控技術於幾何教學軟體以減少幾何迷思概念影響之
研究。國立臺南大學數位學習科技學系碩士論文,臺南。
陳韻如(2017)。探究臺灣五至八年級學生積木方塊三視圖的表現:閱卷調查與教學實驗。國立臺灣師範大學數學系博士班論文,臺北。郭信宏(2005)。國中生在「壓力」與「浮力」單元學習後之迷思概念對解題之影響。國立中山大學教育研究所碩士論文,未出版,高雄。陳啟明(1990)。發展紙筆測驗以探究高一學生對直流電路的迷思概念,國立彰化師範大學科學教育研究所碩士論文,彰化。陳嘉皇(2005)。「學習軌道」理論之意涵與其在兒童圖形與面積概念發展上之探究與應用。教育科學期刊,5(2),1-26。陳嘉皇(2008)。國小面積資訊教材學習軌道設計與教學成效探討。高雄師大學報:自然科學與科技類,25,103-124。
國立教育研究院(2016)。十二年國民基本教育課程綱要。取自:
https://www.naer.edu.tw/files/15-1000-10635,c1174-1.php?Lang=zh-tw
甯平獻、陳鉪逸、劉好、林原宏、易正明、游自達、施淑娟、謝闓如及陳靜姿(2010)。數學教材教法。臺北:五南圖書出版股份有限公司。
黃幸美(2010)。美國當代小學幾何課程發展及其對台灣幾何教學之啟示。教育資料集刊第四十五輯—2010各國初等教育(含幼兒教育),2010年2月23日 取自:https://www.naer.edu.tw/ezfiles/0/1000/attach/27/pta_6936_4891229_
02052.pdf
黃英哲(2006)。國小四、五、六年級學生周長迷思概念之探討。國立臺中教育大學教育測驗統計研究所碩士論文,臺中。葉麗鳳(2008)。國小五年級學童體積概念之研究。國立臺中教育大學數學教育學系數學教育學系在職進修教學碩士學位班碩士論文,臺中。劉正湖(1999)。國中自然地理迷思概念之探討。國立臺灣大學地理學研究所碩 士論文,臺北。
楊凱翔、葉淑珍、譚寧君(2014)。在建立立體心像教學活動之國小體積課程設計本位研究。國立臺灣科技大學人文社會學報,10(3),225-252。劉好(1994)。國民小學數學科新課程中幾何教材的設計。國立嘉義師範學院八十
二學年度數學育研討會論文集,取自http://wd.naer.edu.tw/study/217/00.htm。
鄭麗玉(1998)。如何改變學生的迷思概念。教師之友,39(5),28-36。翰林出版(2016a)。翰林版國小數學課本第二冊。臺南:翰林出版事業。
翰林出版(2016b)。翰林版國小數學教師手冊第二冊。臺南:翰林出版事業。
謝青龍(1995)。從「迷思概念」到「另有架構」的概念改變。科學教育月刊第180期 八十四年五月,取自:http://libwri.nhu.edu.tw:8081/dbook/100704001.pdf鍾聖校(1994)。不同教學法對錯誤概念修正的影響。台北師院學報,7,169-204。
Abimbola, I. O. & Baba, S. (1996). Misconceptions & alternative conceptions in science textbooks. The role of teachers as filters. The American Biology Teacher, 58(1), 14-23.
Ambrose, R., & Kenehan, G. (2009). Children’s evolving understanding of polyhedra in the classroom. Mathematical Thinking and Learning, 11(3), 158–176. doi:10.1080/10986060903016484
Baroody, A. J. (1989). Aguide to teaching mathematics in the primary grades. Boston: Allyn and Bacon.
Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker(Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise, pp. 1-34. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Bartolini Bussi, M. G. (2007). Semiotic mediation: Fragments from a classroom experiment on the coordination of spatial perspectives. ZDM—The International Journal on Mathematics Education, 39(1–2), 63–71. doi:10.1007/s11858-006-0007-y
Battista, M. T. 1998. Shape Makers: Developing geometric reasoning with the Geometer’s Sketchpad. Berkeley, CA: key Curriculum Press.
Battista, M. T. 1999. The Mathematical Miseducation of America’s Youth: Ignoring Research and Scientific Study in Education. Phi Delta Kappan,80(6),424-33.
Battista, M. T. 2001. How do children learn mathematics? research and reform in mathematics education. In Thomas Loveless (Ed.), The Great Curriculum Debate: How Should We Teach Reading and Math? Washington, DC: Brookings Press, pp. 42-84.
Battista, M. T., & Clements, D. H. 1996.”Students’ Understanding of Three-Dimensional Rectangular Arrays of Cubes.”Fournal for Research in Mathematics Education 27(3):258-92.
Battista, M. T. (2004). Applying cognition-based assessment to elementary school students’ development of understanding of area and volume measurement. Mathematical Thinking and Learning, 6(2), 185-204.
Bishop, A. J. (1980).Spatial abilities and mathematics education---A review.
Educational Studies in Mathematics, 11, 257-269.
Bower, T. G. R. (1966). slant percetion and shape constancy in infants. Science, 151, 832-834.
Camou, B. J. (2012). High school students’ learning of 3D geometry using iMAT (integrating multitype-representations, approximations and technology) engineering (Doctoral dissertation). University of Georgia. Retrieved from https://getd.libs.uga.edu/pdfs/camou_bernardo_j _201205_phd.pdf
Clements, D. H., & Battista, M. T .(1992). Geometry and spatial reasoning. In D. A. Grouws(Ed), Handbook of reasoning on mathematics teaching and learning (pp.420-464). New York, NY: Macmillan.
Clements, D. H. (2002). Linking research and curriculum development. In L. D. English (Ed.), Handbook of international research in mathematics education (pp.599-630). Mahwah, NJ: Lawrence Erlbaum Associated, Inc.
Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89.
Clements, D. H., Wilson, D. C., & Sarama, J.(2004). Young children’s composition of geometric figures: A learning trajectory. Mathematical Thinking and Learning, 6(2) , 163-184.
Cobb, P., & Wheatley, G. 1988. “Children’s Initial Understanding of Ten.” Focus on Learning Problems in Mathematics 10(3),1-28.
Confrey, J., Maloney, A., Nguyen, K., Wilson, P. H., & Mojica, G. (2008). Synthesizing research on rational number reasoning. Working Session at the Research Pre-session of the National Council of Teachers of Mathematics, Salt Lake City, UT.
Corcoran, T., Mosher, F. A.,& Rogat, A. (2009). Learning progressions in science: An
Evidence-based approach to reform. NY:Center on Continuous Instructional
Improvement, Teachers College—Columbia University.
Davis, R. B., Maher, C. A., & Nodding, N. (1990). Constructivist views on the teaching and learning of mathematics. Reston. VA:National Council of Teachers of Mathematics.
Daro, P., Masher, F. A., & Corcoran, T. (2011). Learning trajectories in mathematic : A foundation for standards, curriculum assessment, and instuction. Philadelphia :Consortium for Policy Research in Education.
Day, R. H. (1987).Visual size constancy in infancy. In: B. E. McKenzie & R. H. Day (Eds.), Perceptual development in early infancy: problem and issues. Hillsdale, New Jersey: Lawrence Erlbaum Associates, pp. 67-91.
Day, R. H. & Mckenzie, B. E. (1973) .Perceptual shape constancy in early infancy. Peception, 2, 315-320.
de Villiers, M. (2007). A hexagon result and its generalization via proof. The Montana Mathematics Enthusiast, 4(2), 188–192.
Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de Didactique et Sciences cognitives, 10, 5–53.
Fenna van Nes; Scandpower; Michiel Doorman (2011). Fostering Young Children’s Spatial Structuring Ability. International Electronic Journal of Mathematics Education – IΣJMΣ Vol.6, No.1,取自: http://www.iejme.com/makale/291.
Fisher, K. (1985). A miscomception in Biology:Amino acids and translation. Journal of Research in Science Education, 22(1), 53-62.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: Reidel.
Fuson, L. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. L., et al. (1997). Children’s Conceptual Structures for Multidigit Numbers and Methods of Multidigit Addition and Subtraction.Fournal for Research in Mathematics Education 28(2):130-62.
Gravemeijer, K. P. E. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177.
Greeno, J. G., (1991). “Number Sense as Situated Knowing in a Conceptual Domain.” Fournal for Research in Mathematics Education 22(3): 170-218
Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge, MA: Harvard University Press.
Johnson-Laird, P. N. (1998). Imagery, Visualization, and thinking. In J. Hochberg (Ed.), Perception and Cognition at Century’s End. San Diego, CA: Academic Press, pp. 441-67
Jones, K., Mackrell, K., & Stevenson, I. (2010). Designing digital technologies and learning activities for different geometries. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain: The 17th ICMI Study (pp. 47–60). New York, NY: Springer. doi:10.1007/978-1-4419-0146-0_4
Koester, B. (2003). Prisms and pyramids: constructing three-dimensional models to build understanding. Teaching Children Mathematics, 9(8), 436-442.
Lange, J. de.(1996).Using and applying mathematics in education, In A. J. Bishop et al.(Ed.), International Handbook of Mathematics Education(p. 49-97), Dordrecht: Kluwer.
Lean, G, & Clements, M. A.(1981).Spatial ability,visual imagery,and mathematical performance. Educational Studies in Mathematics, 12(3), 267-299.
Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM—The International Journal on Mathematics Education, 43(3), 325–336. doi:10.1007/s11858-011-0329-2
Lord, N. (2008). Maths bite: Averaging polygons. The Mathematical Gazette, 92(523), 134.
Mackrell, K. (2011). Design decisions in interactive geometry software. ZDM—The International Journal on Mathematics Education, 43(3), 373–387. doi:10.1007/s11858-011-0327-4
Mammana, M. F., Micale, B., & Pennisi, M. (2009). Quadrilaterals and tetrahedra. International Journal of Mathematical Education in Science and Technology, 40(6), 817–828. doi:10.1080 /00207390902912860
Mammana, M. F., Micale, B., & Pennisi, M. (2012). Analogy and dynamic geometry system used to introduce threedimensional geometry. International Journal of Mathematical Education in Science and Technology, 43(6), 818–830. doi:10.1080/0020739X.2012.662286
Michael(2012) . Cognition-Based Assessment & Teaching Of Geometric Shapes Building on Student’s Reasoning. Heinemann Portsmouth, NH, ix.
Oberdorf, C. D. & Taylor, C. J.(1990). Shape up. Teaching Children Mathematics, 5(6), 340-345.
Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry (EA Lunzer, Trans.). New York: Basic.
Piaget, J., Inhelder, B. (1967). The child’s conception of space (EJ Langdon & JL Lunzer, Trans.). New York.
Pirie, S. E. B., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it ? Educational Studies in Mathematics, 26, 165-190.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2),211-227.
Reiss, K. (1999). Spatial ability and declarative knowledge in a geometry problem solving context. In O. Zaslavsky(Ed.), Proceedings of the 23rd International Conference for the Psychology of Mathematics Education, Volume I (p. 303). Haifa (Israel) : Technion.
Revina, S., Zulkardi, Darmawijoyo, & van Galen, F. (2011). Spatial Visualization Tasks to Support Students' Spatial Structuring in Learning Volume Measurement. Indonesian Mathematical Society Journal on Mathematics Education, 2(2) p127-146.
Sack, J., & van Niekerk, R. (2009). Developing the spatial operational capacity of young children using wooden cubes and dynamic simulation software. In T. V. Craine & R. Rubinstein (Eds.), Understanding geometry for a changing world (pp. 141–154). Reston, VA: National Council of Teachers of Mathematics.
Sarfaty, Y., & Patkin, D. (2013). The ability of second graders to identify solids in different positions and to justify their answer. Pythagoras, 34(1), 1–10, doi:10.4102/Pythagoras .v34i1.212
Simon, M, A. (1995). Reconstructiong mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26,114-145.
Steffe, L. P. (1998). Children’s Construction of Number Sequences and Multiplying Schemes. In J. Hiebert & M. Behr (Eds.), Number Concepts and Operations in the Middle Grandes. Reston, VA: National Council of Teachers of Mathematics, pp. 119-40.
Steffe, L. P. (1992). Schemes of action and operation involving composite units.
leaning and individual differences , 4(3), 259-309.
Suchmom, L. A. (1987). Plans and situated actions: The problem of human-machine communication. New York: Cambridge University Press.
Tanguay, D., & Grenier, D. (2010). Experimentation and proof in a solid geometry teaching situation. For the Learning of Mathematics, 30(3), 36–42.
Van Hiele, P. M. (1986). Structure and Insight. Orlando, FL: Academic Press.
Wheatley, G. H. & Reynolds, A. M. (1999). "Image maker":Developing spatial sense.Teaching Children Mathematics, 5(6), 374-378.
Wilson, P. H., Mojica, C. F., & Confrey, J. (2013). Learning trajectories in teacher education: supporting teachers’ understandings of students’ mathematical thinging. Journal of Mathematical Behavior, 32(2), 103-121.