(34.204.185.54) 您好!臺灣時間:2021/04/16 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宜錚
研究生(外文):LIN,YI-CHENG
論文名稱:整合探索解題與範例學習的研究
論文名稱(外文):The Study on the Integration of Discovery Learning and Example-based Learning
指導教授:黃一泓黃一泓引用關係
指導教授(外文):HUANG,YI-HUNG
口試委員:林冠成楊晉民
口試委員(外文):LIN,KUAN-CHENGYANG,JINN-MIN
口試日期:2018-06-06
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:數學教育學系在職專班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:75
中文關鍵詞:認知負荷探索式教學概念性知識與程序性知識
外文關鍵詞:Cognitive Load Theoryproblem solvingconceptual knowledge & procedural knowledge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以國中八年級下學期數學課程「等差數列第n項」為學習主題,國中八年級學生為實驗對象,探討開放式探索與引導式兩種不同活動對學習者在認知負荷與學習成效之影響。研究者採取實驗研究法,先以學生的前測成績作為先備知識的依據,將學生分成高與低先備知識組,再分別將高與低先備知識組的學生隨機分派至兩種不同的探索組。實驗的自變項為先備知識高、低分組和兩種不同探索組,依變項為認知負荷,以及後測的概念性知識與程序性知識,控制變項為學習時間、範例學習內容。透過雙因子變異數分析與雙因子多變量分析,分別探討先備知識的高低與兩種不同探索方法對認知負荷與概念性知識及程序性知識的影響。研究結果顯示,先備知識的高低在認知負荷有顯著差異,而兩種不同探索方法在認知負荷有邊緣顯著差異。先備知識的高低在後測的程序與概念性知識上有顯著差異,而兩種不同探索方法在後測的程序與概念性知識上則無顯著差異。
This study uses arithmetic series of the mathematics course for the research topic, and students from eighth grade of the junior high school for the experimental subject to investigate the influence of two factors: high/low prior knowledge and two different discovery learning methods on the learning and cognitive load. The researcher first used the student's pretest as the prior-acknowledge, then they were divided into high and low groups, and the students with high and low groups were randomly assigned to two different groups of open discovery and guided discovery learning. Finally, a post-test was conducted to evaluate their learning achievements. Through “two-way analysis of variance” and “two-way multivariate analysis of variance”, the effects of the level of prior-acknowledge and the different methods of discovery on cognitive load, conceptual knowledge and procedural knowledge were discussed. The results showed that there were significant differences in cognitive load between high and low prior-acknowledge, while the two different discovery methods had significant marginal difference on cognitive load. There is significant difference between high and low prior-acknowledge on the conceptual knowledge and procedure knowledge, and there is no significant difference between the two different discovery methods on the procedure and conceptual knowledge
摘要 I
目次 IV
表目次 VI
圖目次 VII
第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究目的與待答問題 3
第三節 名詞解釋 4
第四節 研究範圍與限制 5
第二章 文獻探討 6
第一節 認知負荷理論 6
第二節 概念性與程序性知識 10
第三節 探究式學習法 14
第四節 範例學習 18
第三章 研究方法 20
第一節 研究架構 20
第二節 研究對象 21
第三節 研究假設 22
第四節 研究流程與設計 23
第五節 研究工具 25
第六節 資料分析 36
第四章 研究結果與討論 37
第一節 描述性統計資料 37
第二節 研究結果 38
第三節 信度分析 40
第四節 討論 41
第五章 結論與建議 44
第一節 結論 44
第二節 未來研究的建議 45
參考文獻 46
一、中文部分 46
二、英文部分 48
附錄 53
附錄一 53
附錄二 55
附錄三 56
附錄四 58
附錄五 59
附錄六 66





表目次
表2-1認知負荷表細目表 8
表2-2隱性與顯性概念性知識測量分類方法 11
表3-1實驗高、低分群統計表暨探索開放式、探索引導式分組…..…. .…… 21
表3-2實驗設計 24
表3-3一元一次方程式成就測驗前測雙項細目表 25
表3-4認知負荷表細目表 28
表3-5等差數列第n項成就測驗後測雙項細目 31
表3-6評分規準 33
表4-1高、低分群認知負荷、範例學習、後測學習成效描述統計表…….…. 37
表4-2 KMO及Bartlett’s的球形檢定 38
表4-3認知負荷因素分析摘要表 39
表4-4問卷量表信度分析結果 40
表4-5探索方法與範例學習(比較範例、範例學習)與後測程序與概念性知識
相關分析摘要表 42











圖目次
圖3-1研究架構 20
圖3-2實驗流程 24
圖3-3開放式探索題目 27
圖3-4引導式解題提示 27
圖3-5探索學習題目 27
圖3-6例題2解答正反例 29
圖3-7範例比較題目 29
圖3-8 範例練習題目 30
圖3-9例題3解答正反例 30
圖3-10後測程序性知識題目 32
圖3-11後測概念性知識題目 32
圖3-12公差觀念錯誤 32
圖4-1不同探索方式在探索學習、範例學習、學習成效表現情況………….. 43






參考文獻
一、中文部分
吳勇賜(2005)。台北地區國一學生數、形規律單元錯誤類型之分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
吳麗玲、楊德清(2007)。臺灣、新加坡與美國五、六年級分數教材佈題呈現與知識屬性差異之研究。國立編譯館館刊,35(1),27-40。
李美蓮(2004)。一位國二學生在等差數列解題表現之研究(未出版之碩士論文)。。國立嘉義大學,嘉義市。
李源順(2005): 同分母真分數加減運算的教學建議。台灣數學教師(電子)期刊,(3),
2-26
林勇吉(2009)。透過敘說取向個案研究探討四位國中數學教師發展數學探究教學之故事:聚焦於信念、知識與實務(未出版之博士論文)。國立彰化師範大學,彰化市。
林碧珍、周欣怡(2013)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。「第 29 屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊。23卷(1),83-110
林寶山(1998)。教學原理與技巧。臺北市:五南。
凃金堂(2011)。運用「範例(worked-out example)」在國小數學問題解決的教學實驗研究。教育心理學報 ,43 卷 1 期,25 - 50
凃金堂(2012)。應用認知負荷理論的數學解題教學實驗。屏東教育大學學報。38期 ,227-256
秦爾聰、林勇吉、林晶珮、段曉林(2009)。數學探究教學對數學解題能力提升知個案研究。科學教育研究與發展季刊,55,83-116。
秦爾聰、劉致演、張克旭、段曉林(2015)。數學臆測探究教學對商職學生數學學習成就與動機之影響。臺灣數學教育期刊,2(2),53-83。
馬秀蘭(2008)。國小高年級學童樣式題之代數思考:以線性圖形樣式題為例。科學發展與研究季刊,第50期,35-52。
康軒文教事業股份有限公司(2015)。國民中學數學課本、教師備課指引第四冊。臺北市:康軒文教事業股份有限公司
教育部(2003)。國民中小學九年一貫課程綱要-數學學習領域。
教育部(2011)。十二年國民基本教育實施計畫。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6,191-218
陳勝楠(2003)。國一學生關於樣式解題歷程之分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
黃一泓(2017)。探究式學習在範例教學上的應用。科技部專題研究計畫申請書,未出版。
黃一泓、謝進泰(2016)。兩種線段圖表徵解題策略在學習成效上的比較。教育心理學報,47(4), 581-601。
楊瑞智(2015年9月)。臆測探究/直式-數學命題工作坊:數學評量理論。臺北市志清國小研習。
盧建民、林怡佑(2017)。活用數學講義第四冊。建弘出版社。臺北市。
鍾靜(2015)。以探究教學提升學童數學概念之深度和廣度。國民教育。第55卷,第一期,126-139。














二、英文部分
Baddeley.(1992). Working memory. Science, 255(5044), 556-559.
Barnett,C.(1998).Mathematics teaching case as catalyst for informed strategic inquiry.
Teaching and Teacher Education,14,81-93.
Bishop, J.(2000) Linear geometric number patterns: middle school students’
strategies. Mathematics Education Research Journal, 12(2), 107-126
Borasi, R., & Fonzi, J. (1998). Teaching practices that support an inquiry approach
to mathematics instruction. Retrieved June 4, 2007, from
http://www.rochester.edu/radiate/C/c1c_sttx.htm
Brünken, R., Seufert, T., and Paas, P., (2010). Measuring cognitive load. In J. L. Plass, R. Moreno, and R. Brünken (Eds.), Cognitive Load Theory (pp. 181–202). New York, NY: Cambridge University Press.
Byrnes, J. P. & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27, 777–786.
Cañadas, M. C. (2002). Razonamiento inductivo puesto de manifiesto por alumnos de secundaria. Granada: Universidad de Granada.
Cañadas, M. C., & Castro, E. (2005). A proposal of categorization for analyzing inductive reasoning. In M. Bosch (Ed.), Proceedings of the CERME 4 international conference (pp. 401-408). Catalonia, Spain: SantFeliu de Guíxols.
Cañadas, M. C., Deulofew, J., Figuerias, L, Reid, D., & Yevdokimov, O. (2007). The conjecturing process: perspectives in theory and implications in practice. Journal of Teaching and Learning,5(1), 55-72.
Curry, L. (2004). The effects of self-explanations of correct and incorrect solutions on algebra problem-solving performance. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the Twenty-sixth annual conference of the Cognitive Science Society (pp. 1548). Mahwah, NJ: Erlbaum.
Dean,D.,&Kuhn,D.(2007).Direct instruction vs. discovery: The long view. Science Education,91,384-397.
DeCaro, M. & Rittle-Johnson, B. (2011). Preparing to learn from math instruction by solving problems first. Paper presented at the Biennial Meeting of the Society for Research in Child Development, Montreal, QC.
Durkin, K. & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22 (3), 206–214.
Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students’ misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39, 1001-1015.
GA Miller(1956), The magical number seven, plus or minus two, The Psychological Review Vol. 63, 81-97
Gelman, R. &Williams, E. M. (1998). Enabling constraints for cognitive development and learning: domain specificity and pigenesist. In D. Kuhn & R. S. Siegler (Eds), Handbook of Child Psychology: Cognition, Perception, and Language (5th edn, Vol. 2, pp. 575–630). New York: John Wiley.
Gerjets, P. & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cognitive load: Evidence from hypertext-based instruction. Educational Psychologist, 38(1), 33-41.
Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., & Renkl, A. (2015a). Inventing asolution and studying a worked solution prepare differently for learning from direct instruction. Learning and Instruction, 39, 72e87.
Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: can this foster learning outcomes? Learning and Instruction, 17(6), 612-634.
Hansen, L. M. (2002). Defining inquiry: Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2), 34-37.
Hiebert, J., & LeFevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Inga Glogger-Frey , Katharina Gaus , Alexander Renkl (2016). Learning from direct instruction: Best prepared by several self-regulated or guided invention activities? Department of Psychology, University of Freiburg, Educational and Developmental Psychology, Engelbergerstr. 41, 79085 Freiburg, Germany
Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press.
Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
Kirschner, P. A., Sweller , J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist,41,75-86
Küchemann, D.(1981). Children’s understanding of Mathematics.Algebra. In K. H. Hart(Ed.),:11-16. London: John Murray.
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, UK:Cambridge University Press.learning. Cognitive Science, 38, 1e37.
Leppink, J., & van den Heuvel, A. (2015). The evolution of cognitive load theory and its application to medical education. Perspectives on Medical Education, 4, 119–127.
Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merrienboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058–1072.
Leppink, J., Paas, F., van Gog, T., van der Vleuten, C. P. M., & van Merrienboer, J. J. G. (2014). Effects pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32–42.
Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., & Styliandies, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villers (Eds.), Proof and proving in mathematics education: The 19th ICMI study (pp. 305-326). New York: Springer.
Loibl, K., Roll, I., & Rummel, N. (2016). Towards a theory of when and how problem
solving followed by instruction supports learning. Educational Psychology Review.http://dx.doi.org/10.1007/s10648-016-9379-x.
MacGregor.M., & Stacey.K(1993). Cognitive models ungerlying student’s formulation of simple linear equations. Journal for Research in Mathematics Education. 24. 217-232
Meadow Goldin, Alibali,S., M. W., & Church, R. B. (1993). Transitions in concept acquisition: using the hand to read the mind. Psychological Review, 100, 279–297.
Merriam-Webster’s Collegiate Dictionary (2012). Retrieved from http:// www.m-w.com.
National Council of Teachers of Mathematics.(1989).Curriculum and evaluation standards for school mathematics. Reston,VA:NCTM
National Council of Teachers of Mathematics.(1991).Professional standards for teaching mathematics .Reston, VA: NCTM
National Council of Teachers of Mathematics.(2000).Professional standards for teaching mathematics .Reston, VA: NCTM
National Research Council (NRC). (1996). National science education standards. The National Academy Press, Washington.
Orton, A. and Orton, J.(1999). Pattern and the Approach to Algebra. In A. Orton(Ed.) Pattern in the teaching and Learning of Mathematics. Lodon: Cassell.
Paas, F., Tuovinen, J., van Merriënboer, J. J. G., & Darabi, A. (2005). A motivational perspective on the relation between mental effort and performance: Optimizing learner involvement in instruction. Educational Technology, Research and Development, 53, 25-34.
Paas, F., & van Gog, T. (2006). Optimising worked example instruction: Different
ways to increase germane cognitive load. Learning and Instruction, 16, 87e91.
http://dx.doi.org/10.1016/j.learninstruc.2006.02.004.
Polya(1962): Mathematical Discovery, On Understanding, Learning, and Teaching Problem Solving. Wiley, 2, 117
Renkl, A. (2014). Toward an instructionally oriented theory of example-based
learning. Cognitive Science, 38, 1e37. http://dx.doi.org/10.1111/cogs.12086.
Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out
examples: the effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90–108.
Rittle-Johnson, B. & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99, 561–574.
Rittle-Johnson, B. & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101, 529–544.
Rittle-Johnson, B. (2006). Promoting transfer: effects of self-explanation and direct instruction. Child Development, 77, 1–15.
Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102–1118). Oxford: Oxford University Press.
Rosenshine,B.(1995).Advances in research on instruction. The Journal of Educational Research,88(5),262-268.
Schwartz, D. L., Chase, C. C., Chin, D. B., & Oppezzo , M. (2011). Practicing versus inventing with contrasting cases: the effects of telling first on learning and transfer. Journal of Educational Psychology, 103, 759–775.
Siegler, R. S. (1996). Emerging Minds: The Process of Change in Children’s Thinking. New York: Oxford University Press.
Siegler, R. S. (2002). Microgenetic studies of self-explanation. In N. Garnott, & J. Parziale (Eds.), Micro development: A process-oriented perspective for studying development and learning (pp. 31-58). Cambridge, MA: Cambridge University Press
Skinner, B. F. (1961). Why we need teaching machines. Harvard Educational Review, 31, 377-398. doi:10.1037/11324-012.
Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411.
Stark, R., Kopp, V., & Fischer, M. R. (2011). Case-based learning with worked examples in complex domains: two experimental studies in undergraduate medical education. Learning and Instruction, 21, 22-33.
Steen(1988). The science of patterns. Science, 240, 48-52.
Sweller, J., (1988).Cognitive load during problem sloving:Effects on learning. Cognitive Science,12, 257-258.
Sweller, J.(2010a). Element interact tivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review,22,123-138.
Sweller, J.(2010b).Cognitive load theory: recent theoretical advances. In J.L. Plass, R. Moreno, and R. Brunken(Eds.), Cognitive Load Theory (pp.29-47). New York, NY: Cambridge University Press.
Sweller, J., Van, Merriënboer J. J. G. & Pass, F.G.W.C.(1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285.
Van den Broek, P., & Kendeou, P. (2008). Cognitive processes in comprehension of science texts: the role of co-activation in confronting misconceptions. Applied Cognitive Psychology, 22, 335-351.
VanLehn, K. (1999). Rule learning events in the acquisition of a complex skill: an evaluation of cascade. Journal of the Learning Sciences, 8(1), 71-125.
Warren, E. (2003). Young children’s understanding of equals: Alongitudinal study. In N. Pateman, G. Dougherty, &; J. Zilliox (Eds.), Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp.379-387). Hawaii: PME.

電子全文 電子全文(網際網路公開日期:20210703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔