(18.210.12.229) 您好!臺灣時間:2021/02/26 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林星妤
研究生(外文):Lin, Hsing-Yu
論文名稱:目標式為條件期望值之模擬最佳化演算架構
論文名稱(外文):An Optimization Framework for Conditional-Expectation-based Simulation Optimization
指導教授:張國浩張國浩引用關係
指導教授(外文):Chang, Kuo-Hao
口試委員:吳建瑋洪一峯
口試委員(外文):Wu, Chien-WeiHung, Yi-Feng
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:53
中文關鍵詞:AGLS-CE條件風險值重要性抽樣最佳資源分配法拉丁超球體抽樣模擬最佳化無微分最佳化演算法
外文關鍵詞:Adaptive Global and Local Search for Conditional ExpectationConditional Value at RiskImportance SamplingOptimal Computing Budget AllocationLatin Hyperball SamplingSimulation Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
條件風險值(Conditional Value at Risk)是一個被廣泛使用的風險管理指標,因此本研究將條件風險值一般化為條件期望值,希望改善其估計方法並處理其最佳化之問題。條件期望值之最佳化問題為非確定性問題,本篇論文提出稱為AGLS-CE (Adaptive Global and Local Search for Conditional Expectation)的無微分最佳化演算法,此方法以AGLS-QC (Adaptive Global and Local Search for Quantile-based Constraint problems)為基礎,在估計條件期望值階段因其具有隨機性與複雜性,我們利用隨機模擬來進行估計,並使用重要性抽樣(Importance Sampling)與最佳資源分配法(Optimal Computing Budget Allocation, OCBA),在不降低精確性的前提下減少模擬所需的資源。在搜尋最佳解階段運用鄰近區域的概念(neighborhood)選定區域搜尋範圍,並於此區域利用本研究提出之拉丁超球體抽樣(Latin Hyperball Sampling)決定區域樣本點,而全域搜尋與區域搜尋的觀測點數量會隨著迭代而改變,最後判斷每一代之最佳解是否有鄰近點可以分享觀測值,再次提高估計的準確性。本研究的數值研究中也顯示此演算法可行且有效,值得深入研究。
Conditional value at risk (CVaR) is one kind of widely used risk measurement in the practice risk management. This paper generalizes CVaR to conditional expectation and looks into its estimation and optimization. Owing to its randomness and complexities, Monte Carlo method is employed to estimate the conditional expectation. We also use Importance Sampling as variance reduction method and Optimal Computing Budget Allocation to make a more efficient use of simulation resources. The optimization problem of conditional expectation is not a deterministic problem. Therefore, we propose a new optimization framework, called Adaptive Global and Local Search for Conditional Expectation, which is a gradient-free method. This framework base on Adaptive Global and Local Search for Quantile-based Constraint problems, we implement the concept of neighborhood; use both local search and global search to find the optimal solution. The numbers of samples in both regions change by iterations. In addition, Latin Hyperball Sampling is used in the local search region to determine the sample points rather than random sampling. Last but not least, we employ Kolmogorov–Smirnov Test to determine whether the nearest point should share its observations to the optimal solution. In the end, a numerical study shows the efficiency and efficacy of our proposed method, which is worth doing further investigation.
摘要 I
Abstract II
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3論文架構 3
第二章 文獻回顧 4
2.1條件風險值 4
2.1.1條件風險值之估計 6
2.1.2條件風險值之最佳化問題 8
2.2模擬最佳化 9
2.3最佳資源分配法(Optimal Computing Budget Allocation, OCBA) 12
第三章 數學模型 15
第四章 求解方法 16
4.1條件期望值的估計 17
4.1.1原始蒙地卡羅模擬法(Crude Monte Carlo Simulation Method) 17
4.1.2 重要性抽樣(Importance Sampling) 18
4.1.3條件期望值可用之最佳資源分配法(OCBA-CE) 20
4.2 AGLS-CE (Adaptive Global and Local Search for Conditional Expectation) 22
4.2.1 AGLS-CE之架構與步驟說明 22
4.2.2定義鄰近區域(Neighborhood) 27
4.2.3區域搜尋樣本點個數與全域搜尋樣本點個數 29
4.2.4拉丁超球體抽樣(Latin Hyperball Sampling) 30
4.2.5判定是否分享舊樣本點觀測值之方法 35
第五章 數值實驗 37
5.1 實驗設計 37
5.2 比較指標 39
5.3 數值結果 40
第六章 例題驗證 46
6.1數學模型 46
6.2例題結果 48
第七章 結論與未來研究 49
參考文獻 50
1. Andersson, F., Mausser, H., Rosen, D., and Uryasev, S. (2001). Credit risk optimization with conditional value at risk criterion. Mathematical Programming, vol. 89, no.2, pp. 273–291.
2. Andrade, F. A., Esat, I., & Badi, M. N. M. (2001). A new approach to time-domain vibration condition monitoring: gear tooth fatigue crack detection and identification by the Kolmogorov–Smirnov test. Journal of Sound and vibration, 240(5), 909-919.
3. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, vol. 9, no. 3, pp. 203–228.
4. Avramidis, A.N., and Wilson, J. R. (1998). Correlation-induction techniques for estimating quantiles in simulation experiments. Operations Research, vol. 46, no. 4, pp. 574–591.
5. Basova, H. G., Rockafellar, R. T., and Royset, J. O. (2011). A computational study of the buffered failure probability in reliability-based design optimization. in Proceedings of the 11th Conference on Application of Statistics and Probability in Civil Engineering.
6. Chang, K. H. Simulation Optimization-based Vehicle Fleet Sizing of Automated Material Handling Systems in Semiconductor Manufacturing. Working Paper, Department of Industrial Engineering and Engineering Management, National Tsing Hua University.
7. Chen, C. H., & Lee, L. H. (2011). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific.
8. Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251-270.
9. Dahlgren, R., Liu, C. C., & Lawarree, J. (2003). Risk assessment in energy trading. IEEE Transactions on Power Systems, 18(2), 503-511.
10. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating value-at-risk. Management Science, vol. 46, no. 10, pp. 1349–1364.
11. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, vol. 12, no. 3, pp. 239–269.
12. Glynn, P. W. (1996). Importance sampling for Monte Carlo estimation of quantiles. in Proceedings of 1996 Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp. 180–185.
13. Greenwell, R. N., & Finch, S. J. (2004). Randomized rejection procedure for the two-sample Kolmogorov–Smirnov statistic. Computational statistics & data analysis, 46(2), 257-267.
14. Hesterberg, T. C., and Nelson, B. L. (1998). Control variates for probability and quantile estimation. Management Science, vol. 44, pp. 1295–1312.
15. Hong, L. J., and Liu, G. (2009). Simulating sensitivities of conditional value-at-risk. Management Science, vol. 55, no. 2, pp. 281–293.
16. Hong, L. J., Hu, Z., and Liu, G. (2014). Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modeling and Computer Simulation, vol. 24, no. 4, article no. 22.
17. Hsu, J. C., and Nelson, B. L. (1990). Control variates for quantile estimation. Management Science, vol. 36, pp. 835–851.
18. Iyengar, G., and Ma, A. K. C. (2013). Fast gradient descent method for mean-CVaR optimization. Annals of Operations Research, vol. 205, pp. 203–212.
19. Jorion, P. (1996). Risk2: Measuring the Risk in Value at Risk. Financial Analysts Journal, 47-56.
20. Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, vol. 4, no. 2, pp. 11–27.
21. Lamiri, M., Grimaud, F., & Xie, X. (2009). Optimization methods for a stochastic surgery planning problem. International Journal of Production Economics, 120(2), 400-410.
22. Luchi, F., & Krohling, R. A. (2015). Differential Evolution and Nelder-Mead for constrained non-linear integer optimization problems. Procedia Computer Science, 55, 668-677.
23. Mckay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, vol. 21, no. 2, pp. 239-245.
24. Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, vol. 7, no. 4, pp. 308–313.
25. Ogryczak, W., & Śliwiński, T. (2011). On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications, 50(3), 591-595.
26. Pflug, G. (2000). Some remarks on the value-at-risk and conditional value-at-risk. Probabilistic Constrained Optimization: Methodology and Applications, pp. 272–281. Springer US.
27. Rockafellar, R. T., and Royset, J. O. (2010). On buffered failure probability in design and optimization of structures. Reliability Engineering & System Safety, vol. 95, no. 5, pp. 499–510.
28. Rockafellar, R. T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, vol. 2, no. 3, pp. 21–41.
29. Sun, L., and Hong, L. J. (2010). Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Operations Research Letters, vol. 38, pp. 246–251.
30. Swann, W. H. (1972). Direct search methods. Numerical methods for unconstrained optimization, 13-28.
31. Tian, P., Wang, H., & Zhang, D. (1995). Nonlinear Integer Programming by Simulated Annealing. IFAC Proceedings Volumes, 28(10), 629-633.
32. Trindade, A. A., Uryasev, S., Shapiro, A., and Zrazhevsky, G. (2007). Financial prediction with constrained tail risk. Journal of Banking and Finance, vol. 31, pp. 3524–3538.
33. Zongrun, W., & Yanju, Z. (2006). Risk management in Supply Chain Based on Conditional Value at Risk Control: Modeling, Strategies and Case Study in China. In Management of Innovation and Technology, 2006 IEEE International Conference on (Vol. 2, pp. 699-702). IEEE.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔