|
1 What Is Liver Cancer? - American Cancer Society (2017). 2 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30, doi:10.3322/caac.21387 (2017). 3 Kew, M. C. Epidemiology of chronic hepatitis B virus infection, hepatocellular carcinoma, and hepatitis B virus-induced hepatocellular carcinoma. Pathol Biol (Paris) 58, 273-277, doi:10.1016/j.patbio.2010.01.005 (2010). 4 El-Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576, doi:10.1053/j.gastro.2007.04.061 (2007). 5 Poon, D. et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 10, 1111-1118, doi:10.1016/S1470-2045(09)70241-4 (2009). 6 Ahmet Gurakar, M. D., James P. Hamilton, M. D., Ayman Koteish, M. D., Zhiping Li, M. D. & Esteban Mezey, M. D. Liver Cancer (Hepatocellular Carcinoma) (2013). 7 Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell 2, 279-289, doi:DOI 10.1105/tpc.2.4.279 (1990). 8 Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811, doi:10.1038/35888 (1998). 9 Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952 (1999). 10 Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33, doi:Doi 10.1016/S0092-8674(00)80620-0 (2000). 11 Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296, doi:10.1038/35005107 (2000). 12 Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498, doi:10.1038/35078107 (2001). 13 Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Gene Dev 15, 188-200, doi:DOI 10.1101/gad.862301 (2001). 14 Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366, doi:10.1038/35053110 (2001). 15 Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321 (2001). 16 Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20, 6877-6888, doi:10.1093/emboj/20.23.6877 (2001). 17 Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405-412, doi:10.1038/nature07755 (2009). 18 Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640, doi:10.1016/j.cell.2005.10.022 (2005). 19 MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V. & Doudna, J. A. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105, 512-517, doi:10.1073/pnas.0710869105 (2008). 20 Hutvagner, G. Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation. Febs Lett 579, 5850-5857, doi:10.1016/j.febslet.2005.08.071 (2005). 21 Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621-629, doi:10.1016/j.cell.2005.10.020 (2005). 22 Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437, doi:10.1126/science.1102514 (2004). 23 Martinez, J. & Tuschl, T. RISC is a 5 ' phosphomonoester-producing RNA endonuclease. Gene Dev 18, 975-980, doi:10.1101/gad.1187904 (2004). 24 Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol 14, 787-791, doi:10.1016/j.cub.2004.03.008 (2004). 25 Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060, doi:10.1126/science.1073827 (2002). 26 Gao, Y., Liu, X. L. & Li, X. R. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 6, 1017-1025, doi:10.2147/IJN.S17040 (2011). 27 Guo, P. et al. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62, 650-666, doi:10.1016/j.addr.2010.03.008 (2010). 28 Landen, C. N., Jr. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65, 6910-6918, doi:10.1158/0008-5472.CAN-05-0530 (2005). 29 Zhang, C. et al. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112, 229-239, doi:10.1016/j.jconrel.2006.01.022 (2006). 30 Gu, F. X. et al. Targeted nanoparticles for cancer therapy. Nano Today 2, 14-21 (2007). 31 Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2, 750-763, doi:10.1038/nrc903 (2002). 32 Ashwell, G. & Morell, A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41, 99-128 (1974). 33 D'Souza, A. A. & Devarajan, P. V. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release 203, 126-139, doi:10.1016/j.jconrel.2015.02.022 (2015). 34 Ma, Y. X. et al. Galactose as Broad Ligand for Multiple Tumor Imaging and Therapy. J Cancer 6, 658-670, doi:10.7150/jca.11647 (2015). 35 Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263, 9557-9560 (1988). 36 Drickamer, K. Ca(2+)-dependent sugar recognition by animal lectins. Biochem Soc Trans 24, 146-150 (1996). 37 Kolatkar, A. R. et al. Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. J Biol Chem 273, 19502-19508 (1998). 38 Ruiz, N. I. & Drickamer, K. Differential ligand binding by two subunits of the rat liver asialoglycoprotein receptor. Glycobiology 6, 551-559 (1996). 39 Tanabe, T., Pricer, W. E., Jr. & Ashwell, G. Subcellular membrane topology and turnover of a rat hepatic binding protein specific for asialoglycoproteins. J Biol Chem 254, 1038-1043 (1979). 40 Stokmaier, D. et al. Design, synthesis and evaluation of monovalent ligands for the asialoglycoprotein receptor (ASGP-R). Bioorg Med Chem 17, 7254-7264, doi:10.1016/j.bmc.2009.08.049 (2009). 41 Mamidyala, S. K. et al. Glycomimetic ligands for the human asialoglycoprotein receptor. J Am Chem Soc 134, 1978-1981, doi:10.1021/ja2104679 (2012). 42 Sanhueza, C. A. et al. Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor. J Am Chem Soc 139, 3528-3536, doi:10.1021/jacs.6b12964 (2017). 43 Rice, K. G., Weisz, O. A., Barthel, T., Lee, R. T. & Lee, Y. C. Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat heptocytes. J Biol Chem 265, 18429-18434 (1990). 44 Lee, Y. C., Lee, R. T., Ernst, B., Hart, G. W. & Sinaý, P. in Carbohydrates in Chemistry and Biology 549-561 (Wiley-VCH Verlag GmbH, 2008). 45 Huang, X., Leroux, J. C. & Castagner, B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug Chem 28, 283-295, doi:10.1021/acs.bioconjchem.6b00651 (2017). 46 Zhu, L. & Mahato, R. I. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem 21, 2119-2127, doi:10.1021/bc100346n (2010). 47 Hu, Y., Haynes, M. T., Wang, Y., Liu, F. & Huang, L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano 7, 5376-5384, doi:10.1021/nn4012384 (2013). 48 Sakashita, M., Mochizuki, S. & Sakurai, K. Hepatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry. Bioorgan Med Chem 22, 5212-5219, doi:10.1016/j.bmc.2014.08.012 (2014). 49 Li, J., Yang, Y. & Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release 158, 108-114, doi:10.1016/j.jconrel.2011.10.020 (2012). 50 Goodwin, T. J., Zhou, Y., Musetti, S. N., Liu, R. & Huang, L. Local and transient gene expression primes the liver to resist cancer metastasis. Sci Transl Med 8, 364ra153, doi:10.1126/scitranslmed.aag2306 (2016). 51 Casoni, F. et al. The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Org Biomol Chem 12, 9166-9179, doi:10.1039/c4ob01599a (2014). 52 Cao, S. D., Meunier, S. J., Andersson, F. O., Letellier, M. & Roy, R. Mild Stereoselective Syntheses of Thioglycosides under Ptc Conditions and Their Use as Active and Latent Glycosyl Donors. Tetrahedron-Asymmetr 5, 2303-2312, doi:Doi 10.1016/S0957-4166(00)86308-9 (1994). 53 Cecioni, S. et al. Rational design and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions: influence of the linker arm. Chemistry 18, 6250-6263, doi:10.1002/chem.201200010 (2012). 54 Huang, S. F. et al. Development of Pseudomonas aeruginosa Lectin LecA Inhibitors using Bivalent Galactosides Supported on Polyproline Peptide Scaffolds. Chem Asian J, doi:10.1002/asia.201701724 (2018).
|