|
1. Wang,G.,Z.Guo,andW.Liu,InterfacialEffectsofSuperhydrophobicPlantSurfaces:AReview. Journal of Bionic Engineering, 2014. 11(3): p. 325-345. 2. Hsu, C.-P., Y.-M. Lin, and P.-Y. Chen, Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes. Jom, 2015. 67(4): p. 744-753. 3. Wen, L., Y. Tian, and L. Jiang, Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angewandte Chemie International Edition, 2015. 54(11): p. 3387-3399. 4. Roach, P., N.J. Shirtcliffe, and M.I. Newton, Progess in superhydrophobic surface development. Soft Matter, 2008. 4(2): p. 224-240. 5. Liu, T.L. and C.J. Kim, Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Science, 2014. 346(6213): p. 1096-100. 6. Umer Mehmood, F.A.A.-S., B.S. Yilbas, B. Salhi, S.H.A. Ahmed, Mohammad K. Hossain, Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Solar Energy Materials & Solar Cells, 2016. 157: p. 604-623. 7. Zhang, S., et al., Atmospheric-pressure O2 plasma treatment of Au/TiO2 catalysts for CO oxidation. Catalysis Today, 2015. 256: p. 142-147. 8. Lin, Y.-C. and M.-J. Wang, Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet. Japanese Journal of Applied Physics, 2016. 55(1S): p. 01AA04. 9. Gazal, Y., et al., Multi-structural TiO2 film synthesised by an atmospheric pressure plasma-enhanced chemical vapour deposition microwave torch. Thin Solid Films, 2016. 600: p. 43-52. 10. 薛天翔, 吳敏文,艾啟峰,《聚酯織布經大氣輝光電漿誘導聚乙烯醇接枝聚合之親水性》. 11. Young, T., An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond, 1805. 95: p. 65-87. 12. Wang, S. and L. Jiang, Definition of Superhydrophobic States. Advanced Materials, 2007. 19(21): p. 3423-3424. 13. Fevzi C. Cebeci, et al., Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir, 2006. 22: p. 2856-2862. 14. Wenzel, R.N., Resistance of Solid Surfaces to Wettability by Water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994. 15. BAXTER, A.B.D.C.a.S., Wettability of Porous Surfaces. Transections of the Faraday Society, 1944. 40: p. 546-551. 16. BARTHLOTT, C.N.a.W., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany, 1997. 79: p. 667–677. 17. Lin Feng, S.L., Yingshun Li,Huanjun Li, Lingjuan Zhang, Jin Zhai,Yanlin Song, Biqian Liu, Lei Jiang,* and Daoben Zhu, Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater, 2002. 14(24): p. 1857-1860. 106 18. Barthlott, W., et al., The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater, 2010. 22(21): p. 2325-8. 19. Zdenek Cerman, B.F.S., and Wilhelm Barthlott, Dry in theWater: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces. Functional Surfaces in Biology, 2009. 1. 20. Lin Feng, † Yanan Zhang,§ Jinming Xi,| Ying Zhu,‡ Nu ̈ Wang,‡ Fan Xia,‡ and Lei Jiang*,‡, Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 2008. 24: p. 4114-4119. 21. Zhang, Y., et al., Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem., 2012. 22(3): p. 799-815. 22. Bauer, U., et al., How to catch more prey with less effective traps: explaining the evolution of temporarily inactive traps in carnivorous pitcher plants. Proc Biol Sci, 2015. 282(1801): p. 20142675. 23. Scholz, I., et al., Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol, 2010. 213(Pt 7): p. 1115-25. 24. Merbach, M.A., et al., Patterns of nectar secretion in five Nepenthes species from Brunei Darussalam, Northwest Borneo, and implications for ant-plant relationships. Flora, 2001. 196(2): p. 153-160. 25. Malik, F.T., et al., Nature's moisture harvesters: a comparative review. Bioinspiration & Biomimetics, 2014. 9(3): p. 031002. 26. Park, K.C., et al., Condensation on slippery asymmetric bumps. Nature, 2016. 531(7592): p. 78-82. 27. Zhai, L., et al., Patterned Superhydrophobic Surfaces Toward a Synthetic Mimicof the Namib. NANO LETTERS, 2006. 6: p. 1213-1217. 28. Andrew R. Parker and C.R. Lawrence, Water capture by a desert beetle. Nature, 2001. 414(33-34). 29. Ju, J., et al., A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun, 2012. 3: p. 1247. 30. Xuefeng Gao and L. Jiang, Biophysics: Water-repellent legs of water striders. Nature, 2004. 432(36). 31. Wang, B., et al., Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318. 32. Brush,A.H.,EvolvingaProtofeatherandFeatherDiversity.AmericanZoologist,2000.40(4):p. 631-639 33. Prum, R.O., Development and Evolutionary Origin of Feathers. Journal of Experimental Zoology (Molecular and Developmental Evolution) 1999. 285(4): p. 291-306. 34. Kennedy, R.J., Directional water-shedding properties of feather. Nature, 1970. 227: p. 736-737. 35. A Ennos, J Hickson, and A. Roberts, Functional morphology of the vanes of the flight feathers of the pigeon Columba livia. Journal of Experimental Biology, 1995. 198(1219-1228). 36. Meyers, M.A., et al., Biological materials: a materials science approach. J Mech Behav Biomed 107
Mater, 2011. 4(5): p. 626-57. 37. Moyer, B.R., A.N. Rock, and D.H. Clayton, Experimental Test of the Importance of Preen Oil in Rock Doves (Columba Livia). The Auk, 2003. 120(2): p. 490-496. 38. Ruke, A.M. and W.A. Jesser', The Feather Structure of Dippers: Water Repellency and Resistance to Water Penetration. The mi.mn Journal of Ornithology, 2010. 122(3): p. 563-568. 39. Rijke, A.M. and W.A. Jesser, The Water Penetration and Repellency of Feathers Revisited. The Condor, 2011. 113(2): p. 245-254. 40. Rijke, A.M. and E.H. Burger., Wettability of feathers and behavioural patterns in water birds. Proceedings of the Pan-African Ornithological Congress, 1985. 153-158(6). 41. Rijke, A.M., The water repellency of water bird feathers. Auk, 1987. 104: p. 140-142. 42. Rijke, A.M., Wettability and Phylogenetic Development of Feather Structure In Water Birds. J. Exp. Biol., 1970. 5: p. 469-479. 43. GORDON, J.E., Structures: or Why Things Don’t Fall Down. 1978. 44. Graham, R., The Silent Flight of Owls. The Journal of the Royal Aeronautical Society, 1934. 38(286): p. 837-843. 45. Bachmann, T. and H. Wagner, The three-dimensional shape of serrations at barn owlwings: towards a typical natural serration as a rolemodel for biomimetic applications. Journal of Anatomy, 2011. 219: p. 192-202. 46. Wang, S., et al., Icephobicity of PenguinsSpheniscus Humboldtiand an Artificial Replica of Penguin Feather with Air-Infused Hierarchical Rough Structures. The Journal of Physical Chemistry C, 2016. 120(29): p. 15923-15929. 47. James Seferis, Vasileios Drakonakis, and C. Doumanidis, Feather-inspired strong, light layered composite. Society of Plastics Engineers (SPE), 2014. 48. Liu, B., et al., Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting. Macromolecular Rapid Communications, 2006. 27(21): p. 1859-1864. 49. Zhang, L., et al., Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. J. Mater. Chem. A, 2015. 3(6): p. 2844-2852. 50. Nuraje, N., et al., Superhydrophobic electrospun nanofibers. J. Mater. Chem. A, 2013. 1(6): p. 1929-1946. 51. Zheng, J., et al., Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer, 2006. 47(20): p. 7095-7102. 52. Zhou, Z. and X.-F. Wu, Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation. Materials Letters, 2015. 160: p. 423-427. 53. Röhrig, M., et al., Hot pulling and embossing of hierarchical nano- and micro-structures. Journal of Micromechanics and Microengineering, 2013. 23(10): p. 105014. 54. Park, S.H., et al., Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing. Sci Rep, 2015. 5: p. 15430. 55. Phong, H.Q., S.-L. Wang, and M.-J. Wang, Cell behaviors on micro-patterned porous thin films. 108
Materials Science and Engineering: B, 2010. 169(1-3): p. 94-100. 56. Ho, Q.P., S.L. Wang, and M.J. Wang, Creation of biofunctionalized micropatterns on poly(methyl methacrylate) by single-step phase separation method. ACS Appl Mater Interfaces, 2011. 3(11): p. 4496-503. 57. I. Woodward, et al., Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films. Langmuir, 2003. 19: p. 3432-3438. 58. Jan Genzer and K. Efimenko, Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers. Science, 2000. 290(5499): p. 2130-2133. 59. Greiner, C., Size and Shape Effects in Bioinspired Fibrillar Adhesives. 2008. 60. Brassard, J.-D., D.K. Sarkar, and J. Perron, Fluorine Based Superhydrophobic Coatings. Applied Sciences, 2012. 2(4): p. 453-464. 61. XuDeng,etal.,CandleSootasaTemplateforaTransparentRobustSuperamphiphobicCoating. Science, 2012. 335(6064): p. 67-70. 62. Park, J., et al., Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces. Green Chem., 2013. 15(1): p. 100-104. 63. Wang, D., et al., Towards a tunable and switchable water adhesion on a TiO(2) nanotube film with patterned wettability. Chem Commun (Camb), 2009(45): p. 7018-20. 64. Daoai Wang, et al., Engineering a Titanium Surface with Controllable Oleophobicity and Switchable Oil. J. Phys. Chem. C, 2010. 114: p. 9938-9944. 65. Tian, D., et al., Photo-induced water–oil separation based on switchable superhydrophobicity– superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 2012. 22(37): p. 19652. 66. Zhang, L., Z. Zhang, and P. Wang, Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Materials, 2012. 4(2): p. e8. 67. Manrique-Juárez, M.D., et al., Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coordination Chemistry Reviews, 2016. p. 395-408. 68. Metwalli, E., et al., Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. J Colloid Interface Sci, 2006. 298(2): p. 825-31. 69. R. J. Goldston and P.H. Rutherford, Introduction to Plasma Physics. Institute of Physics Pub, 1995: p. 1-2. 70. Morozov, A.I., Introduction to Plasma Dynamics. CRC Press, 2012: p. 17. 71. 徐逸明, et al., 常壓電漿原理、技術與應用. 72. Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1063-1077. 73. Yang, C.-Y., et al., Rapid deposition of superhydrophilic stalagmite-like protrusions for underwater selective superwettability. RSC Adv., 2016. 6(92): p. 89298-89304. 74. Yang, C.-Y., et al., Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. J. Mater. Chem. A, 2016. 4(9): p. 3406-3414. 75. Bose, D.M.A.C. and K.K. Ostrikov, Atmospheric-Microplasma-Assisted Nanofabrication: Metal andMetal–Oxide Nanostructures and Nanoarchitectures. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 37, NO. 6, JUNE 2009, 2009. 76. Selwyn, G.S., et al., Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source. Contributions to Plasma Physics, 2001. 41(6): p. 610-619. 77. Andreas Sch ̈utze, et al., The Atmospheric-Pressure Plasma Jet: A Review and Comparsion to Other Plasma Sources. IEEE Transactions On Plasma Science, 1998. 37(6). 78. Siemens, W., Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Poggendorff ’s Ann. Phys. Chem, 1857. 102(9): p. 66-122. 79. Kogelschatz, U., Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing, 2003. 23(1). 80. Levchenko, I., K. Ostrikov, and D. Mariotti, The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis. Carbon, 2009. 47(1): p. 344-347. 81. Mariotti, D., V. Švrček, and D.-G. Kim, Self-organized nanostructures on atmospheric microplasma exposed surfaces. Applied Physics Letters, 2007. 91(18): p. 183111. 82. Yoshiki Shimizu, et al., Localized Deposition of Metallic Molybdenum Particles in Ambient Air Using Atmospheric-Pressure Microplasma. 2007. 83. Mariotti, D., A.C. Bose, and K. Ostrikov, Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal-Oxide Nanostructures and Nanoarchitectures. Ieee Transactions on Plasma Science, 2009. 37(6): p. 1027-1033. 84. Lin, Y., Y.-J. Yang, and C.-c. Hsu, Synthesis of niobium oxide nanowires using an atmospheric pressure plasma jet. Thin Solid Films, 2011. 519(10): p. 3043-3049. 85. Shimizu, Y., et al., Development of wire spraying for direct micro-patterning via an atmospheric-pressure UHF inductively coupled microplasma jet. Surface and Coatings Technology, 2006. 200(14-15): p. 4251-4256. 86. Bhushan*, Y.C.J.a.B., Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/philicity and Oleophobicity/philicity†. Langmuir, 2009. 25(24): p. 14165–14173 87. Wegst UGK and A. MF., The mechanical efficiency of natural materials. Philos Mag, 2004. 84(21): p. 2167-86. 88. Richard O. Prum, A.H.B.,《恐龍來了》. 科學人特刊, 2015 年 10 月. 遠流出版事業股份有限公司: p. 102-103. 89. Bodde, S.G., M.A. Meyers, and J. McKittrick, Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J Mech Behav Biomed Mater, 2011. 4(5): p. 723-32. 90. Lipomi, D.J., et al., Soft Lithographic Approaches to Nanofabrication. 2012: p. 211-231. 91. Idris, A., et al., Dissolution of feather keratin in ionic liquids. Green Chemistry, 2013. 15(2): p. 525. 92. D. Rama Rao and V.B. Gupta, Crystallite Orientation in Wool Fibers. Journal of Applied Polymer Science, 1992. 46(6): p. 1109-1112. 93. Hammond, E.G., et al, Soybean Oil, in Bailey's Industrial Oil and Fat Products. John Wiley &Sons, Inc, 2005. 94. Verho, T., et al., Reversible switching between superhydrophobic states on a hierarchically structured surface. Proceedings of the National Academy of Sciences, 2012. 109(26): p. 10210-10213.
|