跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑋辰
研究生(外文):Hung, Wei-Chen
論文名稱:以大氣電漿及矽烷化處理於羽毛表面合成多功能超疏水及疏油塗層
論文名稱(外文):Synthesis of Multifunctional Superhydrophobic and Oleophobic Coatings on Feathers by Atmospheric Pressure Plasma Treatment and Silanization
指導教授:陳柏宇陳柏宇引用關係
指導教授(外文):Chen, Po-Yu
口試委員:呂明諺黃貞祥
口試委員(外文):Lu, Ming-YenHuang, Chen-Siang
口試日期:2017-10-13
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:111
中文關鍵詞:羽毛濕潤性多階層結構超疏水性疏油性表面改質大氣電漿抗沾表面
外文關鍵詞:featherwettingmulti-layered structuresuperhydrophobicityoleophobicitysurface modificationatmospheric plasmaanti-fouling surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
自潔性塗層發展已逾數十年並可應用於科技產品及生活經驗的改善,然其合成多需經昂 貴且複雜的製程,大幅限制其應用價值。本研究受啟發於鳥類羽毛之天然疏水性,首著重於 探討不同鳥禽類的廓羽表面結構以及濕潤性質。以電子顯微鏡觀察多種羽毛的排列結構,並 比較其濕潤性質與結構排列之關聯性。進而在具微米級多階層結構之羽毛表面做改質,藉由 調控常溫大氣電漿之氣流及處理時間以活化表面,同時在短時間內沈積一薄奈米金屬氧化層; 並於常溫常壓下蒸鍍含氟長碳鏈矽烷化物,形成自潔疏水表面。結果顯示不同種鳥禽之共同 廓羽結構由羽軸、羽枝和羽小枝組成,羽小枝末端形成倒鉤狀,與鄰近羽小枝相互勾纏而形 成穩固羽片並可固定距離。然而管徑和間距因種類而異,連帶造成羽毛天然疏水性和抗水穿 透能力之差異。大氣電漿輔助沉積奈米粒子形成的多階層結構可增強表面鏈結之碳氟長鏈的 疏水性,使得經表面改質之羽毛呈現抗沾水性及較佳的疏油性。本法亦適用於常見的玻璃、 紙、布料、矽基板,在不破壞原結構之下,成功改質為超疏水表面。
綜合以上,我們探討羽毛之結構排列與其疏水性與抗穿透能力之關係,期盼對於疏水表 面之微結構設計有所幫助。本研究使用之改質技術亦成功於常溫常壓下,於短時間內改變表 面濕潤性質,期望未來可將此簡單、快速之表面改質法應用於大規模改質製程,改善目前奈 米製程及改質技術的高能耗、高成本及難以量化之缺點。
Self-cleaning coatings have been developed for decades and lead to wide applications yet still limited by the expensive and complex processes. Inspired from the hydrophobicity of feather, we investigated the relation between the aligned structure and wettability of contour feathers. To go further, a facile two-step method was used to synthesize self-cleaning surfaces. The atmospheric pressure plasma (APP) technique was utilized to activate the surface and create hierarchical-structured metal-oxide coatings within a few seconds. The parameters of gas flow and coating time were evaluated and optimized. After silanization, the surfaces exhibited self-cleaning capability with low sliding angle and enhanced oleophobicity. Results indicated that all contour feathers were constructed by rachis, barbs and barbules. The terminals of barbules were hook-like shape, which could interlock with the adjacent barbules, forming the stable vane and maintaining fixed spacing. While the scale and spacing distance varied among species, leading to the difference in wettability and water resistance. APP-assisted nanoparticle deposition formed the hierarchical structure that enhanced the superhydrophobicity of the fluorinated surface. This method was also successfully applied on different substrates.
In summary, we investigated the relation between hierarchical structure and wettability of feather, which could contribute to the micro-pattern design. We then developed a facile and cost- effective method to fabricate multifunctional, anti-wetting surfaces under atmospheric pressure and
moderate temperature in short time, which could be applied to various substrates in different fields and overcome the limitations of current technologies.
Contents
中文摘要...................................................................................................................................... I Abstract...................................................................................................................................... II List of Tables........................................................................................................................... VII Figure Caption ..................................................................................................................... VIII
Chapter Chapter 2.1.
2.2. 2.3.
1. 2.
Introduction........................................................................................................1
2.4.
2.5.
Literature Review .............................................................................................. 7 Wettability on Solid Surfaces................................................................................7
2.1.1. Young’s Equation .......................................................................................... 7
2.1.2. Wenzel and Cassie Baxter Equations .......................................................... 8
Specific Wettability in Nature.............................................................................10 Feathers................................................................................................................. 13
2.3.1. Morphologies and Vane Structure............................................................. 14
2.3.2. Structure-related Water Repellency and Penetration ............................. 15
2.3.3. Recent Researches on Feathers.................................................................. 17
Recent Developments on Superwettability ........................................................ 17
2.4.1. Micropattern and Rough Structures.........................................................17
2.4.2. Surface Modification .................................................................................. 19
Atmospheric Pressure Plasma Technology ........................................................ 21
IV
Chapter 3.1. 3.2.
3.3. 3.4.
3.5.
3.6. Chapter 4.1. 4.2. 4.3.
3.
Experimental Methods .................................................................................... 43 Sample Collections and Preparations ................................................................ 43 Surface Modification ........................................................................................... 43
2.5.1. Theoretical Background ............................................................................. 21
2.5.2. Processing Principles .................................................................................. 22
2.5.3. Recent Developments of Atmospheric Pressure Plasma ......................... 23
2.5.4. Previous Researches of Surface Modification via APPJ Technique ....... 26
3.2.1. Atmospheric Pressure Plasma-assisted Nanoparticle Deposition .......... 44
3.2.2. Silanization .................................................................................................. 44
Structural Characterization and Elemental Analysis....................................... 45 Wetting Behavior ................................................................................................. 46
3.4.1. Static Contact Angle Measurement ........................................................... 46
3.4.2. Dynamic Contact Angle Measurement ..................................................... 47
Optimization and Evaluation of Stability .......................................................... 48 Water Repellency and Penetration.....................................................................48 Results and Discussions ................................................................................... 57 Basic Properties of Feathers ............................................................................... 57 Surface Morphology and Microstructure of Feather ....................................... 58 Wettability of Natural Feather ........................................................................... 60
4.
V
4.3.1. Static Contact Angle Analysis .................................................................... 60
4.3.2. Dynamic of Contact Angle Analysis .......................................................... 62
Surface Modification ........................................................................................... 65
4.4.1. Structural Characterization....................................................................... 65
4.4.2. Surface Coating Analyses ........................................................................... 66
4.4.3. Stability Evaluation and Wettability Measurement ................................ 70
Water Repellency and Penetration.....................................................................73
4.5.1. Repellent Factor Calculation ..................................................................... 73
4.5.2. Penetration Test........................................................................................... 76
Chapter 5. Conclusions.....................................................................................................103 References ............................................................................................................................... 106
4.4.
4.5.
1. Wang,G.,Z.Guo,andW.Liu,InterfacialEffectsofSuperhydrophobicPlantSurfaces:AReview. Journal of Bionic Engineering, 2014. 11(3): p. 325-345.
2. Hsu, C.-P., Y.-M. Lin, and P.-Y. Chen, Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes. Jom, 2015. 67(4): p. 744-753.
3. Wen, L., Y. Tian, and L. Jiang, Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angewandte Chemie International Edition, 2015. 54(11): p. 3387-3399.
4. Roach, P., N.J. Shirtcliffe, and M.I. Newton, Progess in superhydrophobic surface development.
Soft Matter, 2008. 4(2): p. 224-240.
5. Liu, T.L. and C.J. Kim, Repellent surfaces. Turning a surface superrepellent even to completely
wetting liquids. Science, 2014. 346(6213): p. 1096-100.
6. Umer Mehmood, F.A.A.-S., B.S. Yilbas, B. Salhi, S.H.A. Ahmed, Mohammad K. Hossain,
Superhydrophobic surfaces with antireflection properties for solar applications: A critical
review. Solar Energy Materials & Solar Cells, 2016. 157: p. 604-623.
7. Zhang, S., et al., Atmospheric-pressure O2 plasma treatment of Au/TiO2 catalysts for CO
oxidation. Catalysis Today, 2015. 256: p. 142-147.
8. Lin, Y.-C. and M.-J. Wang, Preparation of nitrogen doped silicon oxides thin films by plasma
polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet.
Japanese Journal of Applied Physics, 2016. 55(1S): p. 01AA04.
9. Gazal, Y., et al., Multi-structural TiO2 film synthesised by an atmospheric pressure
plasma-enhanced chemical vapour deposition microwave torch. Thin Solid Films, 2016. 600: p.
43-52.
10. 薛天翔, 吳敏文,艾啟峰,《聚酯織布經大氣輝光電漿誘導聚乙烯醇接枝聚合之親水性》.
11. Young, T., An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond, 1805. 95: p. 65-87.
12. Wang, S. and L. Jiang, Definition of Superhydrophobic States. Advanced Materials, 2007.
19(21): p. 3423-3424.
13. Fevzi C. Cebeci, et al., Nanoporosity-Driven Superhydrophilicity: A Means to Create
Multifunctional Antifogging Coatings. Langmuir, 2006. 22: p. 2856-2862.
14. Wenzel, R.N., Resistance of Solid Surfaces to Wettability by Water. Industrial & Engineering
Chemistry, 1936. 28(8): p. 988-994.
15. BAXTER, A.B.D.C.a.S., Wettability of Porous Surfaces. Transections of the Faraday Society,
1944. 40: p. 546-551.
16. BARTHLOTT, C.N.a.W., Characterization and Distribution of Water-repellent, Self-cleaning
Plant Surfaces. Annals of Botany, 1997. 79: p. 667–677.
17. Lin Feng, S.L., Yingshun Li,Huanjun Li, Lingjuan Zhang, Jin Zhai,Yanlin Song, Biqian Liu, Lei
Jiang,* and Daoben Zhu, Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater, 2002. 14(24): p. 1857-1860.
106
18. Barthlott, W., et al., The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater, 2010. 22(21): p. 2325-8.
19. Zdenek Cerman, B.F.S., and Wilhelm Barthlott, Dry in theWater: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces. Functional Surfaces in Biology, 2009. 1.
20. Lin Feng, † Yanan Zhang,§ Jinming Xi,| Ying Zhu,‡ Nu ̈ Wang,‡ Fan Xia,‡ and Lei Jiang*,‡,
Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 2008. 24: p.
4114-4119.
21. Zhang, Y., et al., Recent progress of double-structural and functional materials with special
wettability. J. Mater. Chem., 2012. 22(3): p. 799-815.
22. Bauer, U., et al., How to catch more prey with less effective traps: explaining the evolution of
temporarily inactive traps in carnivorous pitcher plants. Proc Biol Sci, 2015. 282(1801): p.
20142675.
23. Scholz, I., et al., Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect
attachment via microscopic surface roughness. J Exp Biol, 2010. 213(Pt 7): p. 1115-25.
24. Merbach, M.A., et al., Patterns of nectar secretion in five Nepenthes species from Brunei Darussalam, Northwest Borneo, and implications for ant-plant relationships. Flora, 2001.
196(2): p. 153-160.
25. Malik, F.T., et al., Nature's moisture harvesters: a comparative review. Bioinspiration &
Biomimetics, 2014. 9(3): p. 031002.
26. Park, K.C., et al., Condensation on slippery asymmetric bumps. Nature, 2016. 531(7592): p.
78-82.
27. Zhai, L., et al., Patterned Superhydrophobic Surfaces Toward a Synthetic Mimicof the Namib.
NANO LETTERS, 2006. 6: p. 1213-1217.
28. Andrew R. Parker and C.R. Lawrence, Water capture by a desert beetle. Nature, 2001.
414(33-34).
29. Ju, J., et al., A multi-structural and multi-functional integrated fog collection system in cactus.
Nat Commun, 2012. 3: p. 1247.
30. Xuefeng Gao and L. Jiang, Biophysics: Water-repellent legs of water striders. Nature, 2004.
432(36).
31. Wang, B., et al., Keratin: Structure, mechanical properties, occurrence in biological organisms,
and efforts at bioinspiration. Progress in Materials Science, 2016. 76: p. 229-318.
32. Brush,A.H.,EvolvingaProtofeatherandFeatherDiversity.AmericanZoologist,2000.40(4):p.
631-639
33. Prum, R.O., Development and Evolutionary Origin of Feathers. Journal of Experimental
Zoology (Molecular and Developmental Evolution) 1999. 285(4): p. 291-306.
34. Kennedy, R.J., Directional water-shedding properties of feather. Nature, 1970. 227: p. 736-737.
35. A Ennos, J Hickson, and A. Roberts, Functional morphology of the vanes of the flight feathers of
the pigeon Columba livia. Journal of Experimental Biology, 1995. 198(1219-1228).
36. Meyers, M.A., et al., Biological materials: a materials science approach. J Mech Behav Biomed 107

Mater, 2011. 4(5): p. 626-57.
37. Moyer, B.R., A.N. Rock, and D.H. Clayton, Experimental Test of the Importance of Preen Oil in
Rock Doves (Columba Livia). The Auk, 2003. 120(2): p. 490-496.
38. Ruke, A.M. and W.A. Jesser', The Feather Structure of Dippers: Water Repellency and
Resistance to Water Penetration. The mi.mn Journal of Ornithology, 2010. 122(3): p. 563-568.
39. Rijke, A.M. and W.A. Jesser, The Water Penetration and Repellency of Feathers Revisited. The
Condor, 2011. 113(2): p. 245-254.
40. Rijke, A.M. and E.H. Burger., Wettability of feathers and behavioural patterns in water birds.
Proceedings of the Pan-African Ornithological Congress, 1985. 153-158(6).
41. Rijke, A.M., The water repellency of water bird feathers. Auk, 1987. 104: p. 140-142.
42. Rijke, A.M., Wettability and Phylogenetic Development of Feather Structure In Water Birds. J.
Exp. Biol., 1970. 5: p. 469-479.
43. GORDON, J.E., Structures: or Why Things Don’t Fall Down. 1978.
44. Graham, R., The Silent Flight of Owls. The Journal of the Royal Aeronautical Society, 1934.
38(286): p. 837-843.
45. Bachmann, T. and H. Wagner, The three-dimensional shape of serrations at barn owlwings:
towards a typical natural serration as a rolemodel for biomimetic applications. Journal of
Anatomy, 2011. 219: p. 192-202.
46. Wang, S., et al., Icephobicity of PenguinsSpheniscus Humboldtiand an Artificial Replica of
Penguin Feather with Air-Infused Hierarchical Rough Structures. The Journal of Physical
Chemistry C, 2016. 120(29): p. 15923-15929.
47. James Seferis, Vasileios Drakonakis, and C. Doumanidis, Feather-inspired strong, light layered
composite. Society of Plastics Engineers (SPE), 2014.
48. Liu, B., et al., Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through
Soft-Lithographic Imprinting. Macromolecular Rapid Communications, 2006. 27(21): p.
1859-1864.
49. Zhang, L., et al., Inkjet printing for direct micropatterning of a superhydrophobic surface:
toward biomimetic fog harvesting surfaces. J. Mater. Chem. A, 2015. 3(6): p. 2844-2852.
50. Nuraje, N., et al., Superhydrophobic electrospun nanofibers. J. Mater. Chem. A, 2013. 1(6): p.
1929-1946.
51. Zheng, J., et al., Studies on the controlled morphology and wettability of polystyrene surfaces by
electrospinning or electrospraying. Polymer, 2006. 47(20): p. 7095-7102.
52. Zhou, Z. and X.-F. Wu, Electrospinning superhydrophobic–superoleophilic fibrous PVDF
membranes for high-efficiency water–oil separation. Materials Letters, 2015. 160: p. 423-427.
53. Röhrig, M., et al., Hot pulling and embossing of hierarchical nano- and micro-structures.
Journal of Micromechanics and Microengineering, 2013. 23(10): p. 105014.
54. Park, S.H., et al., Bioinspired superhydrophobic surfaces, fabricated through simple and
scalable roll-to-roll processing. Sci Rep, 2015. 5: p. 15430.
55. Phong, H.Q., S.-L. Wang, and M.-J. Wang, Cell behaviors on micro-patterned porous thin films. 108

Materials Science and Engineering: B, 2010. 169(1-3): p. 94-100.
56. Ho, Q.P., S.L. Wang, and M.J. Wang, Creation of biofunctionalized micropatterns on
poly(methyl methacrylate) by single-step phase separation method. ACS Appl Mater Interfaces,
2011. 3(11): p. 4496-503.
57. I. Woodward, et al., Super-hydrophobic Surfaces Produced by Plasma Fluorination of
Polybutadiene Films. Langmuir, 2003. 19: p. 3432-3438.
58. Jan Genzer and K. Efimenko, Creating Long-Lived Superhydrophobic Polymer Surfaces
Through Mechanically Assembled Monolayers. Science, 2000. 290(5499): p. 2130-2133.
59. Greiner, C., Size and Shape Effects in Bioinspired Fibrillar Adhesives. 2008.
60. Brassard, J.-D., D.K. Sarkar, and J. Perron, Fluorine Based Superhydrophobic Coatings.
Applied Sciences, 2012. 2(4): p. 453-464.
61. XuDeng,etal.,CandleSootasaTemplateforaTransparentRobustSuperamphiphobicCoating.
Science, 2012. 335(6064): p. 67-70.
62. Park, J., et al., Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces.
Green Chem., 2013. 15(1): p. 100-104.
63. Wang, D., et al., Towards a tunable and switchable water adhesion on a TiO(2) nanotube film
with patterned wettability. Chem Commun (Camb), 2009(45): p. 7018-20.
64. Daoai Wang, et al., Engineering a Titanium Surface with Controllable Oleophobicity and
Switchable Oil. J. Phys. Chem. C, 2010. 114: p. 9938-9944.
65. Tian, D., et al., Photo-induced water–oil separation based on switchable superhydrophobicity–
superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod
array-coated mesh films. Journal of Materials Chemistry, 2012. 22(37): p. 19652.
66. Zhang, L., Z. Zhang, and P. Wang, Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia
Materials, 2012. 4(2): p. e8.
67. Manrique-Juárez, M.D., et al., Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coordination Chemistry Reviews, 2016. p. 395-408.
68. Metwalli, E., et al., Surface characterizations of mono-, di-, and tri-aminosilane treated glass
substrates. J Colloid Interface Sci, 2006. 298(2): p. 825-31.
69. R. J. Goldston and P.H. Rutherford, Introduction to Plasma Physics. Institute of Physics Pub, 1995: p. 1-2.
70. Morozov, A.I., Introduction to Plasma Dynamics. CRC Press, 2012: p. 17.
71. 徐逸明, et al., 常壓電漿原理、技術與應用.
72. Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1063-1077.
73. Yang, C.-Y., et al., Rapid deposition of superhydrophilic stalagmite-like protrusions for underwater selective superwettability. RSC Adv., 2016. 6(92): p. 89298-89304.
74. Yang, C.-Y., et al., Stalagmite-like self-cleaning surfaces prepared by silanization of plasma-assisted metal-oxide nanostructures. J. Mater. Chem. A, 2016. 4(9): p. 3406-3414.
75. Bose, D.M.A.C. and K.K. Ostrikov, Atmospheric-Microplasma-Assisted Nanofabrication: Metal andMetal–Oxide Nanostructures and Nanoarchitectures. IEEE TRANSACTIONS ON
PLASMA SCIENCE, VOL. 37, NO. 6, JUNE 2009, 2009.
76. Selwyn, G.S., et al., Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source. Contributions to Plasma Physics, 2001. 41(6): p. 610-619.
77. Andreas Sch ̈utze, et al., The Atmospheric-Pressure Plasma Jet: A Review and Comparsion to Other Plasma Sources. IEEE Transactions On Plasma Science, 1998. 37(6).
78. Siemens, W., Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Poggendorff ’s Ann. Phys. Chem, 1857. 102(9): p. 66-122.
79. Kogelschatz, U., Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing, 2003. 23(1).
80. Levchenko, I., K. Ostrikov, and D. Mariotti, The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis. Carbon, 2009. 47(1): p. 344-347.
81. Mariotti, D., V. Švrček, and D.-G. Kim, Self-organized nanostructures on atmospheric microplasma exposed surfaces. Applied Physics Letters, 2007. 91(18): p. 183111.
82. Yoshiki Shimizu, et al., Localized Deposition of Metallic Molybdenum Particles in Ambient Air Using Atmospheric-Pressure Microplasma. 2007.
83. Mariotti, D., A.C. Bose, and K. Ostrikov, Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal-Oxide Nanostructures and Nanoarchitectures. Ieee Transactions on Plasma Science, 2009. 37(6): p. 1027-1033.
84. Lin, Y., Y.-J. Yang, and C.-c. Hsu, Synthesis of niobium oxide nanowires using an atmospheric pressure plasma jet. Thin Solid Films, 2011. 519(10): p. 3043-3049.
85. Shimizu, Y., et al., Development of wire spraying for direct micro-patterning via an atmospheric-pressure UHF inductively coupled microplasma jet. Surface and Coatings Technology, 2006. 200(14-15): p. 4251-4256.
86. Bhushan*, Y.C.J.a.B., Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/philicity and Oleophobicity/philicity†. Langmuir, 2009. 25(24): p. 14165–14173
87. Wegst UGK and A. MF., The mechanical efficiency of natural materials. Philos Mag, 2004. 84(21): p. 2167-86.
88. Richard O. Prum, A.H.B.,《恐龍來了》. 科學人特刊, 2015 年 10 月. 遠流出版事業股份有限公司: p. 102-103.
89. Bodde, S.G., M.A. Meyers, and J. McKittrick, Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). J Mech Behav Biomed Mater, 2011. 4(5): p. 723-32.
90. Lipomi, D.J., et al., Soft Lithographic Approaches to Nanofabrication. 2012: p. 211-231.
91. Idris, A., et al., Dissolution of feather keratin in ionic liquids. Green Chemistry, 2013. 15(2): p. 525.
92. D. Rama Rao and V.B. Gupta, Crystallite Orientation in Wool Fibers. Journal of Applied Polymer Science, 1992. 46(6): p. 1109-1112.
93. Hammond, E.G., et al, Soybean Oil, in Bailey's Industrial Oil and Fat Products. John Wiley &Sons, Inc, 2005.
94. Verho, T., et al., Reversible switching between superhydrophobic states on a hierarchically structured surface. Proceedings of the National Academy of Sciences, 2012. 109(26): p. 10210-10213.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊