(3.239.192.241) 您好!臺灣時間:2021/03/02 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃耀欽
研究生(外文):Huang, Yao-Chin
論文名稱:鋰原子低能階的雷射光譜
論文名稱(外文):Laser Spectroscopy of Low-lying Levels in Atomic Lithium
指導教授:王立邦王立邦引用關係
指導教授(外文):Wang, Li-Bang
口試委員:周哲仲鄭王曜劉怡維褚志崧
口試委員(外文):Chou, Che-ChungCheng, Wang-YauLiu, Yi-WeiChuu, Chih-Sung
口試日期:2017-11-01
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:176
中文關鍵詞:鋰原子超精細結構外腔式雷射精密光譜紫光鐳射
外文關鍵詞:LithiumHyperfine SplittingECDLSpectroscopyUV Laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究鋰原子低能階的雷射光譜。實驗上,我們分別建立兩套相似的雷射系統,其中一套雷射系統為光譜雷射,其頻率穩定在共焦的法布立-培若(Fabry-Pérot)腔體上,藉由改變腔體長度達到掃描雷射的頻率功能並且可得到鋰原子光譜。另一套雷射系統為參考雷射,此雷射的頻率會鎖在碘分子躍遷譜線。利用光電倍增管偵測雷射誘發的螢光訊號,並且記錄兩套雷射系統之間頻率的差值。

在2P_{1/2}超精細結構分裂及D1同位素偏移實驗上,我們釐清了不同的團隊量測結果的爭議。結論上,鋰-6與鋰-7的第一激發態2P_{1/2}超精細結構分裂分別為26.108(9)百萬赫玆和91.873(5)百萬赫玆與目前的理論計算相符。而同位素偏移大小為10533.800(15)百萬赫玆,結合實驗測量與理論計算的同位素偏移也可計算出鋰-7與鋰-6相對均方根核電荷半徑的大小差值為-0.720(6)費米平方。

為了要檢測理論計算在鋰原子低能階的準確度,我們也測量激發態3P_{1/2}的超精細結構分裂。實驗精準度相較以往的測量提高六點七倍,此外,在決定絕對頻率數值精確度提高三千倍。
This dissertation studies the low-lying levels of ^{6,7}Li in a well-collimated atomic beam. We have built two laser systems, one of which frequency is stabilized on a confocal Fabry-Perot cavity and scans the lithium spectrum by tuning the cavity length as a spectroscopy laser. Another laser is locked to molecular iodine transition near lithium resonance line as a reference laser. The laser-induced fluorescence signal is detected by a photomultiplier, and
the beat frequency between the spectroscopy laser and the reference laser is recorded.

We have claried that the 2P_{1/2} hyperfine structure splitting and D1 isotope shift for stable ^{6,7}Li disagree with previous experiments. The 2P_{1/2} hyperfine interval are 26.108(9) MHz and 91.873(5) MHz for ^{6}Li and ^{7}Li, respectively. The D1 isotope shift is 10533.800(15) MHz. Combining the measured D1 isotope shift with the calculated energy shift determines the relative squared nuclear charge radius to be -0.720(6) fm^{2}.

In order to test atomic calculations in other low-lying levels, we have also measured the hyperfine splitting of 3P_{1/2} state. Our result improves the precision by a factor of 6.7 compared to previous measurements. Furthermore, the absolute frequency is measured and the precision is three thousand times better than previous results.
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 The Importance of Li D Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Nuclear Theory Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Discrepancies of Li D1 Line and Splitting Isotope Shift . . . . . . . 4
1.1.4 Study of 3P Level in Lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Lithium Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Energy Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Hyperne Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Hyperne Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Isotope Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Mass Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Field Shift (Volume Shift) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Absolute Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 External Cavity Diode Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 External Cavity on Littrow Configuration . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Grating Parameter in Littrow-type Cavity . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Laser Linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Lasing Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Mode-hop Free Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 ECDL Design and Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Laser Diode Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Grating and Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Peltier Cooler Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Protect Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.5 Modulation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.6 Finished Product Picture and Items List . . . . . . . . . . . . . . . . . . . . . . 42
4 Iodine Spectroscopy for 647 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Laser Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Iodine Spectroscopy near 646.7 nm Region . . . . . . . . . . . . . . . . . . . . 48
4.3 Iodine Experiment System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Absorption Spectrum and Sub-Doppler Spectrum . . . . . . . . . . . . . . 50
4.3.2 Dispersion-like Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Pressure versus Temperature of Iodine Cell . . . . . . . . . . . . . . . . . . . . 53
4.5 Absolute Frequency Measurement System . . . . . . . . . . . . . . . . . . . . . 55
4.6 Absolute Frequency Measurement Result . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 System Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Pressure Shift Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.3 The a1, a10, and a15 Components Result . . . . . . . . . . . . . . . . . . . . 64
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Second Harmonic Generation Ultraviolet Light at 323 nm . . . . . . . . . . . 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Phase Matching Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Critical Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Walk-off Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Effective Nonlinear Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Boyd-Kleinmann Theory: Optimum Beam Waist . . . . . . . . . . . . . . . . . 74
5.6 Cavity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.1 A Stable Optical Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.2 Enhancement Pw with a Bow-tie Cavity . . . . . . . . . . . . . . . . . . . . . . 85
5.6.3 Second Harmonic Power P2w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Measurement of Hyperfine Intervals and Isotope Shift for 2S1/2-2P1/2(D1 line) . .91
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Energy Level Diagram of 2S1/2-2P1/2 . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Laser System for spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.2 Atomic Beam and Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.3 Reference Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Result - (New Reference System) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Noise and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.2 Laser Power Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.3 The Hyperfine Splitting of 2P1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.4 D1 Isotope Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.5 Absolute Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.1 Hyperfine Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5.2 D1 Isotope Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5.3 Absolute Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7 Measurement of Hyperfine Intervals for 2S1/2-3P1/2 . . . . . . . . . . . . 125
7.1 Background of the 3P State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Characterization of the Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.1 Fundamental Laser of 647 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.2 Optical Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.3 SHG Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 The 3P State Transition Signal Search . . . . . . . . . . . . . . . . . . . . . . . 135
7.4 3P1/2 State Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4.1 Line Profile Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.2 Hyperfine Splitting of 3P1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4.3 Absolute Frequency Determination . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Appendix
A Monolithic Cvity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B Tapered Amplifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C Matlab Program for Calculation of Optimal Beam Waist . . . . . . . . . . . . .155
D SHG Cavity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
[1] Z.-C. Yan, W. Nortershauser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[2] M. Puchalski, D. Kedziera, and K. Pachucki, “D1 and D2 lines in 6Li and 7Li including QED effects,” Phys. Rev. A 87, 032503 (2013).
[3] M. Puchalski and K. Pachucki, “Fine and hyperfine splitting of the 2P state in Li and Be+,” Phys. Rev. A 79, 032510 (2009).
[4] V. A. Yerokhin, “Hyperfine structure of Li and Be+,” Phys. Rev. A 78, 012513 (2008).
[5] R. Sanchez, W. Nortershauser, G. Ewald, D. Albers, J. Behr, P. Bricault, B. A. Bushaw, A. Dax, J. Dilling, M. Dombsky, G. W. F. Drake, S. G ̈otte, R. Kirchner, H.- J. Kluge, T. Ku ̈hl, J. Lassen, C. D. P. Levy, M. R. Pearson, E. J. Prime, V. Ryjkov, A. Wojtaszek, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of 9,11Li: The influence of halo neutrons,” Phys. Rev. Lett. 96, 033002 (2006).
[6] W. Nortershauser, R. Sanchez, G. Ewald, A. Dax, J. Behr, P. Bricault, B. A. Bushaw, J. Dilling, M. Dombsky, G. W. F. Drake, S. Gotte, H.-J. Kluge, T. Kuhl, J. Lassen, C. D. P. Levy, K. Pachucki, M. Pearson, M. Puchalski, A. Wojtaszek, Z.- C. Yan, and C. Zimmermann, “Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination,” Phys. Rev. A 83, 012516 (2011).
[7] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, “Absolute optical frequency measurement of the cesium d1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568 (1999).
[8] A. Peters, K. Y. Chung, B. Young, J. Hensley, and S. Chu, “Precision atom interferometry,” Phil. Trans. R. Soc. Lond. A 355, 2223 (1997).
[9] P. J. Mohr, D. B. Newell, and B. N. Taylor, “CODATA recommended values of the fundamental physical constants: 2014,” Rev. Mod. Phys. 88, 035009 (2016).
[10] M. P. Bradley, J. V. Porto, S. Rainville, J. K. Thompson, and D. E. Pritchard, “Penning trap measurements of the masses of 133Cs, 87,85Rb, and 23Na with uncertainties ≤ 0.2 ppb,” Phys. Rev. Lett. 83, 4510 (1999).
[11] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li D lines,” Phys. Rev. Lett. 107, 023001 (2011).
[12] S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74, 032503 (2006).
[13] M. Maric, J. J. McFerran, and A. N. Luiten, “Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium,” Phys. Rev. A 77, 032502 (2008).
[14] Z.-C. Yan and G. W. F. Drake, “Lithium isotope shifts as a measure of nuclear size,” Phys. Rev. A 61, 022504 (2000).
[15] M. Puchalski, A. M. Moro, and K. Pachucki, “Isotope shift of the 3 2S1/2 − 2 2S1/2 transition in lithium and the nuclear polarizability,” Phys. Rev. Lett. 97, 133001 (2006).
[16] M. Puchalski, J. Komasa, and K. Pachucki, “Testing quantum electrodynamics in the lowest singlet states of the beryllium atom,” Phys. Rev. A 87, 030502 (2013).
[17] M. Puchalski, K. Pachucki, and J. Komasa, “Isotope shift in a beryllium atom,” Phys. Rev. A 89, 012506 (2014).
[18] K. Pachucki, M. Weitz, and T. W. Hansch, “Theory of the hydrogen-deuterium isotope shift,” Phys. Rev. A 49, 2255 (1994).
[19] A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. H ̈ansch, “Hydrogen-deuterium 1S − 2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468 (1998).
[20] D. Shiner, R. Dixson, and V. Vedantham, “Three-nucleon charge radius: A precise laser determination using 3He,” Phys. Rev. Lett. 74, 3553 (1995).
[21] L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the 6He nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004).
[22] P. Mueller, I. A. Sulai, A. C. C. Villari, J. A. Alcantara-Nunez, R. Alves-Conde, K. Bailey, G. W. F. Drake, M. Dubois, C. El ́eon, G. Gaubert, R. J. Holt, R. V. F. Janssens, N. Lecesne, Z.-T. Lu, T. P. O’Connor, M.-G. Saint-Laurent, J.-C. Thomas, and L.-B. Wang, “Nuclear charge radius of 8He,” Phys. Rev. Lett. 99, 252501 (2007).
[23] G. Ewald, W. Nortershauser, A. Dax, S. Gotte, R. Kirchner, H.-J. Kluge, T. Kuhl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of 8,9Li determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004).
[24] G. Ewald, W. Nortershauser, A. Dax, S. Gotte, R. Kirchner, H.-J. Kluge, T. Kuhl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Erratum: Nuclear charge radii of 8,9Li determined by laser spectroscopy [Phys. Rev. Lett. 93 , 113002 (2004)],” Phys. Rev. Lett. 94, 039901 (2005).
[25] M. Puchalski and K. Pachucki, “Relativistic, qed, and finite nuclear mass corrections for low-lying states of Li and Be+,” Phys. Rev. A 78, 052511 (2008).
[26] W. Nortershauser, D. Tiedemann, M. Zakova, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, C. Geppert, M. Kowalska, J. Kramer, A. Krieger, R. Neugart, R. Sa ́nchez, F. Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, and C. Zim- mermann, “Nuclear charge radii of 7,9,10Be and the one-neutron halo nucleus 11Be,” Phys. Rev. Lett. 102, 062503 (2009).
[27] P. Campbell, I. Moore, and M. Pearson, “Laser spectroscopy for nuclear structure physics,” Prog. Part. Nucl. Phys. 86, 127 (2016).
[28] W. Scherf, O. Khait, H. J ̈ager, and L. Windholz, “Re-measurement of the transition frequencies, fine structure splitting and isotope shift of the resonance lines of lithium, sodium and potassium,” Z. Phys. D: At., Mol. Clusters 36, 31 (1996).
[29] B. A. Bushaw, W. Nortershauser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of 6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[30] G. A. Noble, B. E. Schultz, H. Ming, and W. A. van Wijngaarden, “Isotope shifts and fine structures of 6,7Li D lines and determination of the relative nuclear charge radius,” Phys. Rev. A 74, 012502 (2006).
[31] D. Das and V. Natarajan, “Absolute frequency measurement of the lithium D lines: Precise determination of isotope shifts and fine-structure intervals,” Phys. Rev. A 75, 052508 (2007).
[32] K. C. Brog, T. G. Eck, and H. Wieder, “Fine and hyperfine structure of the 2 2P term of 6Li and 7Li,” Phys. Rev. 153, 91–103 (1967).
[33] L. Windholz, H. Jager, M. Musso, and G. Zerza, “Laserspectroscopic investigations of the lithium-D-lines in magnetic fields,” Z. Phys. D: At., Mol. Clusters 16, 41 (1990).
[34] C. J. Sansonetti, B. Richou, R. Engleman, and L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency-modulation spectroscopy,” Phys. Rev. A 52, 2682 (1995).
[35] J. Walls, R. Ashby, J. Clarke, B. Lu, and W. A. van Wijngaarden, “Measurement of isotope shifts, fine and hyperfine structure splittings of the lithium D lines,” Eur. Phys. J. D 22, 159 (2003).
[36] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Erratum: Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li D lines [Phys. Rev. Lett. 107, 023001 (2011)],” Phys. Rev. Lett. 109, 259901 (2012).
[37] R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7Li D2 lines,” Phys. Rev. A 87, 032504 (2013).
[38] H. Jaeger, M. Musso, C. Neureiter, and L. Windholz, “Optical measurement of the free spectral range and spacing of plane and confocal fabry-perot interferometers,” Opt. Eng. 29, 42 (1990).
[39] A. Banerjee, D. Das, and V. Natarajan, “Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator,” Opt. Lett. 28, 1579 (2003).
[40] M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1S0−1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94, 052511 (2016).
[41] R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Erratum: Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7Li D2 lines [Phys. Rev. A 87, 032504 (2013)],” Phys. Rev. A 88, 069902 (2013).
[42] Y.-C. Huang, H.-C. Chen, S.-E. Chen, J.-T. Shy, and L.-B. Wang, “Precise frequency measurements of iodine hyperfine transitions at 671 nm,” Appl. Opt. 52, 1448 (2013).
[43] W. Haynes, CRC Handbook of Chemistry and Physics, 97th Edition (CRC Press, 2016).
[44] V. Gerginov, A. Derevianko, and C. E. Tanner, “Observation of the nuclear magnetic octupole moment of 133Cs,” Phys. Rev. Lett. 91, 072501 (2003).
[45] A. K. Singh, D. Angom, and V. Natarajan, “Observation of the nuclear magnetic octupole moment of 173Yb from precise measurements of the hyperfine structure in the 3P2 state,” Phys. Rev. A 87, 012512 (2013).
[46] N. C. Lewty, B. L. Chuah, R. Cazan, B. K. Sahoo, and M. D. Barrett, “Spectroscopy on a single trapped 137Ba+ ion for nuclear magnetic octupole moment determination,” Opt. Express 20, 21379 (2012).
[47] N. Stone, “Table of nuclear magnetic dipole and electric quadrupole moments,” At. Data Nucl. Data Tables 90, 75 (2005).
[48] N. Stone, “Table of nuclear electric quadrupole moments,” At. Data Nucl. Data Tables 111, 1 (2016).
[49] W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova, “Relativistic many-body calculation of energies, lifetimes, hyperfine constants, and polarizabilities in 7Li,” Phys. Rev. A 77, 022510 (2008).
[50] M. Puchalski and K. Pachucki, “Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure,” Phys. Rev. Lett. 111, 243001 (2013).
[51] E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[52] W. Nagourney, W. Happer, and A. Lurio, “Level-crossing study of the hyperfine structure of lithium,” Phys. Rev. A 17, 1394–1407 (1978).
[53] M. Godefroid, C. F. Fischer, and P. Jo ̈nsson, “Non-relativistic variational calculations of atomic properties in Li−like ions: LiI to OVI,” J. Phys. B 34, 1079 (2001).
[54] C. Foot, Atomic physics (Oxford University Press, 2005).
[55] J. E. Rosenthal and G. Breit, “The isotope shift in hyperfine structure,” Phys. Rev.
41, 459 (1932).
[56] J. Persson, “Extraction of hyperfine anomalies without precise values of the nuclear
magnetic dipole moment,” Eur. Phys. J. A 2, 3 (1998).
[57] M. F. Crawford and A. L. Schawlow, “Electron-nuclear potential fields from hyper-
fine structure,” Phys. Rev. 76, 1310 (1949).
[58] H. J. Rosenberg and H. H. Stroke, “Effect of a diffuse nuclear charge distribution
on the hyperfine-structure interaction,” Phys. Rev. A 5, 1992 (1972).
[59] A. Bohr and V. F. Weisskopf, “The influence of nuclear structure on the hyperfine
structure of heavy elements,” Phys. Rev. 77, 94 (1950).
[60] S. Buttgenbach, “Magnetic hyperfine anomalies,” Hyperfine Interact. 20, 1 (1984).
[61] M. Puchalski and K. Pachucki, “Nuclear structure effects in the isotope shift with halo nuclei,” Hyperfine Interact. 196, 35 (2010).
[62] J. Friar, “Nuclear finite-size effects in light muonic atoms,” Ann. Phys. 122, 151 (1979).
[63] M. Puchalski and K. Pachucki, “Quantum electrodynamics corrections to the 2P fine splitting in Li,” Phys. Rev. Lett. 113, 073004 (2014).
[64] M. Puchalski and K. Pachucki, “Quantum electrodynamics mα6 and mα7lnα corrections to the fine splitting in Li and Be+,” Phys. Rev. A 92, 012513 (2015).
[65] L. R. Suelzle, M. R. Yearian, and H. Crannell, “Elastic electron scattering from Li6 and Li7,” Phys. Rev. 162, 992 (1967).
[66] W. Demtroder, Laser Spectroscopy: Vol. 2: Experimental Techniques (SpringerVerlag Berlin Heidelberg, 2008), 4th ed.
[67] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, Y. Chang, A. Grinin, T. Lamour, T. Shi, D. C. Yost, T. Udem, T. W. Ha ̈nsch, and N. Kolachevsky, “Active fiber-based retroreflector providing phase-retracing anti-parallel laser beams for precision spectroscopy,” Opt. Express 24, 17470 (2016).
[68] J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443 (1985).
[69] K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729 (1995).
[70] K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098 (1992).
[71] C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1 (1991).
[72] B. H. McGuyer, M. McDonald, G. Z. Iwata, M. G. Tarallo, W. Skomorowski, R. Moszynski, and T. Zelevinsky, “Precise study of asymptotic physics with subradiant ultracold molecules,” Nature Physics 11, 32 (2015).
[73] H. Dinesan, E. Fasci, A. Castrillo, and L. Gianfrani, “Absolute frequency stabiliza- tion of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Lett. 39, 2198 (2014).
[74] T. Hof, D. Fick, and H. Jnsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283 (1996).
[75] L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. K ̈onig, and T. Hansch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541 (1995).
[76] V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[77] E. Kirilov, M. J. Mark, M. Segl, and H.-C. Nagerl, “Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing,” Applied Physics B 119, 233–240 (2015).
[78] V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Do ̈ringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122, 217 (2016).
[79] E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83, 043101 (2012).
[80] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477 (2001).
[81] J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable extended-cavity diode laser based on a novel flexure-mechanism,” Int. J. Optomechatroni. 7, 181 (2013).
[82] S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961 (2009).
[83] S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5 kHz linewidth and 200 nm tuning range at 1.55 μm and methods for linewidth measurement,” Opt. Express 22, 10642 (2014).
[84] D. K. Shin, B. M. Henson, R. I. Khakimov, J. A. Ross, C. J. Dedman, S. S. Hodgman, K. G. H. Baldwin, and A. G. Truscott, “Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0-1.1 μm,” Opt. Express 24, 27403 (2016).
[85] G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672 (2007).
[86] T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119 (2009).
[87] M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175 (2000).
[88] T. Laurila, T. Joutsenoja, R. Hernberg, and M. Kuittinen, “Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating,” Appl. Opt. 41, 5632 (2002).
[89] X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609 (2006).
[90] D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012).
[91] A. Martin, P. Baus, and G. Birkl, “External cavity diode laser setup with two interference filters,” Appl. Phys. B 122, 298 (2016).
[92] A. Takamizawa, S. Yanagimachi, and T. Ikegami, “External cavity diode laser with very-low frequency drift,” Appl. Phys. Express 9, 032704 (2016).
[93] X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48, 1619 (2012).
[94] A. Takamizawa, S. Yanagimachi, T. Ikegami, and R. Kawabata, “External cavity diode laser with frequency drift following natural variation in air pressure,” Appl. Opt. 54, 5777 (2015).
[95] Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149 (1967).
[96] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940 (1958).
[97] C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4, 288 (1986).
[98] T. Tanaka, “Carrier-induced refractive-index change, mode gain and spontaneousemission factor in AlGaInP SQW-SCH laser diodes,” Electron. Lett. 26, 766 (1990).
[99] G. Hunziker, W. Knop, P. Unger, and C. Harder, “Gain, refractive index, linewidth enhancement factor from spontaneous emission of strained GaInP quantum-well lasers,” IEEE J. Quantum Elect. 31, 643 (1995).
[100] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Elect. 18, 259 (1982).
[101] R. Paschotta, “Derivation of the schawlow-townes linewidth of lasers,” RP Photon- ics Consulting GmbH (2010).
[102] P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969 (1991).
[103] P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556 (1991).
[104] M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), pp. 402–405, 6th ed.
[105] C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop- free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811 (2001).
[106] S. Dutta, D. S. Elliott, and Y. P. Chen, “Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating,” Appl. Phys. B 106, 629 (2012).
[107] L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27, 237 (2002).
[108] J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE T. Instrum. Meas. 48, 544 (1999).
[109] J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd : YAG laser,” IEEE T. Instrum. Meas. 48, 583 (1999).
[110] S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, and R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84 (2003).
[111] T. Yoon, J. Ye, J. Hall, and J.-M. Chartier, “Absolute frequency measurement of the iodine-stabilized He − Ne laser at 633 nm,” Appl. Phys. B 72, 221 (2001).
[112] H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolu- tion Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1. (Japan Society for the Promotion of Science, 2000).
[113] We have used IodineSpec version 5 to simulate these transitions. For the actual status of the program, contact knoeckel@iqo.unihannover.de.
[114] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118 (1961).
[115] TOPTICA Photonics AG: SHG pro; Spectra-Physics: WaveTrain 2; M-square: SOLSTIS ECD-X-Q.
[116] A. Smith, Crystal nonlinear optics with SNLO examples (As-Photonics, 2016).
[117] J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic
generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214 (1997).
[118] K. Miyata, N. Umemura, and K. Kato, “Phase-matched pure χ(3) third-harmonic
generation in noncentrosymmetric BiB3O6,” Opt. Lett. 34, 500 (2009).
[119] V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear fre- quency conversion based on BiB3O6,” Laser & Photonics Rev. 4, 53 (2010).
[120] H. Hellwig, J. Liebertz, and L. Bohat, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88, 240 (2000).
[121] N. Umemura, K. Miyata, and K. Kato, “New data on the optical properties of BiB3O6,” Opt. Mater. 30, 532 (2007).
[122] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999), 3rd ed.
[123] P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt. 44, 6971 (2005).
[124] M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6,” Opt. Express 12, 6002 (2004).
[125] H. Hellwig, J. Liebertz, and L. Bohay, “Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6(BIBO),” Solid State Commun. 109, 249 (1998).
[126] G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597 (1968).
[127] Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76, 645 (2003).
[128] J. Hald, “Second harmonic generation in an external ring cavity with a brewster-cut nonlinear crystal: theoretical considerations,” Opt. Commun. 197, 169 (2001).
[129] J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ = 1.30 μm and λ = 2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
[130] W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd : YAG laser using monolithic MgO : LiNbO3 external resonant cavities,” IEEE J. Quantum Elect. 24, 913 (1988).
[131] W. P. Risk and W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707 (1992).
[132] T. Freegarde and C. Zimmermann, “On the design of enhancement cavities for second harmonic generation,” Opt. Commun. 199, 435 (2001).
[133] H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550 (1966).
[134] M. Brieger, H. Busener, A. Hese, F. v. Moers, and A. Renn, “Enhancement of single
frequency SGH in a passive ring resonator,” Opt. Commun. 38, 423 (1981).
[135] K. Hayasaka, Y. Zhang, and K. Kasai, “Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser,” Opt. Express 12, 3567 (2004).
[136] Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mw of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31, 1942 (2014).
[137] E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400 (1991).
[138] D. Das and V. Natarajan, “High-precision measurement of hyperfine structure in the D lines of alkali atoms,” J. Phys. B 41, 035001 (2008).
[139] H. Orth, H. Ackermann, and E. W. Otten, “Fine and hyperfine structure of the 22P term of 7Li; determination of the nuclear quadrupole moment,” Z. Phys. A 273, 221 (1975).
[140] A. K. Singh, L. Muanzuala, and V. Natarajan, “Precise measurement of hyperfine structure in the 2P1/2 state of 7Li using saturated-absorption spectroscopy,” Phys. Rev. A 82, 042504 (2010).
[141] A. K. Singh, L. Muanzuala, A. K. Mohanty, and V. Natarajan, “Optical frequency metrology with an Rb-stabilized ring-cavity resonator – study of cavity-dispersion errors,” J. Opt. Soc. Am. B 29, 2734 (2012).
[142] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[143] Y.-T. Kuo, “Precision measurement of hyperfine intervals and isotope shift of D1 lines of atomic lithium,” Master’s thesis, National Tsing Hua University (2014).
[144] A. Beckmann, K. D. B ̈oklen, and D. Elke, “Precision measurements of the nuclear magnetic dipole moments of 6Li,7 Li,23 Na,39 K and 41K,” Z. Phys. 270, 173 (1974).
[145] C. D. Jager, H. D. Vries, and C. D. Vries, “Nuclear charge- and magnetization- density-distribution parameters from elastic electron scattering,” At. Data Nucl. Data Tables 14, 479 (1974). Nuclear Charge and Moment Distributions.
[146] K. Beloy and A. Derevianko, “Second-order effects on the hyperfine structure of P states of alkali-metal atoms,” Phys. Rev. A 78, 032519 (2008).
[147] A. Derevianko, S. G. Porsev, and K. Beloy, “Convergence of all-order many-body methods: Coupled-cluster study for Li,” Phys. Rev. A 78, 010503 (2008).
[148] Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1lines of atomic 7Li,” J. Phys. B 46, 075004 (2013).
[149] H. Orth, R. Veit, H. Ackermann, and E. W. Otten, “Abstracts of contributed papers to the fourth international conference on atomic physics (4th ICAP),” (Heidelberg, 1974), p. 93.
[150] L. Windholz, “Laser-spectroscopic investigations of the lithium resonance lines,” Appl. Phys. B 60, 573 (1995).
[151] Z.-C. Yan and G. W. F. Drake, “Lithium transition energies and isotope shifts: QED recoil corrections,” Phys. Rev. A 66, 042504 (2002).
[152] L. M. Wang, C. Li, Z.-C. Yan, and G. W. F. Drake, “Isotope shifts and transition frequencies for the S and P states of lithium: Bethe logarithms and second-order relativistic recoil,” Phys. Rev. A 95, 032504 (2017).
[153] R. M. Jr., “The isotope shift in the 22P states of lithium and spatially resolved laser-induced fluorescence,” Appl. Phys. Lett. 35, 580 (1979).
[154] G. Li, I. Sick, R. Whitney, and M. Yearian, “High-energy electron scattering from 6Li,” Nucl. Phys. A 162, 583 (1971).
[155] F. A. Bumiller, F. R. Buskirk, J. N. Dyer, and W. A. Monson, “Elastic electron scattering from 6Li and 7Li at low momentum transfer,” Phys. Rev. C 5, 391 (1972).
[156] H. D. Vries, C. D. Jager, and C. D. Vries, “Nuclear charge-density-distribution parameters from elastic electron scattering,” At. Data Nucl. Data Tables 36, 495 (1987).
[157] E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowley, and A. P. Levick, “Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment,” Phys. Rev. A 49, 207 (1994).
[158] Y.-H. Lien, K.-J. Lo, H.-C. Chen, J.-R. Chen, J.-Y. Tian, J.-T. Shy, and Y.-W. Liu, “Absolute frequencies of the 6,7Li 2S 2S1/2 → 3S 2S1/2 transitions,” Phys. Rev. A 84, 042511 (2011).
[159] B. D. Cannon, T. J. Whitaker, G. K. Gerke, and B. A. Bushaw, “Anomalous linewidths and peak-height ratios in 137Ba hyperfine lines,” Appl. Phys. B 47, 201 (1988).
[160] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 5.4), [online],” National Institute of Standards and Technology, Gaithersburg, MD (2017). Available: http://physics.nist.gov/asd.
[161] J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781 (2009).
[162] V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219 (2004).
[163] X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient fre- quency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Physics 26, 045401 (2016).
[164] L. S. Cruz and F. C. Cruz, “External power-enhancement cavity versus intracavity frequency doubling of Ti : sapphire lasers using BIBO,” Opt. Express 15, 11913 (2007).
[165] J. J. Snyder, “Paraxial ray analysis of a cat’s-eye retroreflector,” Appl. Opt. 14, 1825 (1975).
[166] L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li and 7Li (Li I),” Phys. Rev. A 52, 4462 (1995).
[167] B. Budick, H. Bucka, R. J. Goshen, A. Landman, and R. Novick, “Fine and hyperfine structure of the 32P term in lithium,” Phys. Rev. 147, 1 (1966).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔