(3.237.97.64) 您好!臺灣時間:2021/03/04 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡銘宏
研究生(外文):Chien, Ming-Hung
論文名稱:在不同製程下對NAND型快閃記憶體的隨機電報雜訊的影響
論文名稱(外文):The influence of different process on the Random Telegraph Noise of the NAND Flash Memory
指導教授:金雅琴
指導教授(外文):King, Ya-Chin
口試委員:陳映仁劉怡君
口試日期:2018-06-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:積體電路設計與製程開發產業碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:快閃記憶體雜訊隨機電報雜訊
外文關鍵詞:Flash MemoryNAND FlashMemory CellRTN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的二十年當中,快閃記憶體已經在儲存性電子產品當中站穩了腳步,而NAND快閃記憶體更因其成本低因此而成為了大量資料儲存的最佳解決方案。

然而隨著半導體製程的進步,半導體元件尺寸越來越小,並且元件在頻繁的抹除與寫入的情況底下,耐用性、可靠度以及元件壽命都面臨了嚴峻的挑戰。

在寫入以及抹除的循環測試當中,會使得缺陷在通道氧化層上產生,這些缺陷發生在氧化層和矽晶體交介面處,並且間接轉化為相位雜訊對晶片的性能造成影響,上述的行為造成了電子的捕捉以及釋放,連帶改變了通道的電流,這便是隨機電報雜訊,兼且在晶片尺寸縮小時,雜訊訊號比的比例亦會跟著上升;使得電路設計更為困難,因此分析製程及實驗對於隨機電報雜訊的影響就很重要。

隨著元件的微縮,隨機電報雜訊的影響開始不能被忽視。本文將會就1X奈米的NAND快閃記憶體去做測試,探討在什麼情況下,最容易觀察到隨機電報雜訊,並且就在產品製作過程當中所採用的不同製程對於隨機電報雜訊的影響來做討論。
In the past two decades, flash memory has played an important role in the storage market, and NAND flash memory has become the best solution for massive storage due to its low cost and high density.

However, as the medium CMOS technology progresses, the size of a memory cell becomes smaller and smaller, and the developers face with severe challenges in terms of memory durability, reliability, and device lifetime, when experience frequent erasing and programming during oper-ation.

In programming and erasing cycle tests, defects are created on the channel oxide film. These defects occur at the interface between the oxide layer and the substrate which converse to phase noise that affects the per-formance of memory array. The above behavior caused the capture and re-lease of electrons, which in turn changed the current of the channel, lead-ing to random telegraph noise. Also, as the chip size shrinks, signal to noise ratio decreases which cause additional challenges in readout circuit design much more difficult. Therefore, analysis on the influence of process and experiment on random telegraph noise is very important.

With the miniaturization of devices, the impact of random telegraph noise cannot be ignored. Therefore, this study employed 1X nanometer NAND flash memory as test subject, and discuss under the circumstances which one can induced random telegraph noise the most easily. Moreover, the effects of different manufacturing processes on RTN on 2D NAND flash memory arrays.

第一章 緒論 1
1.1 研究動機 1
1.2 揮發性記憶體 2
1.3 非揮發性記憶體 2
1.4 論文章節介紹 3
第二章 雜訊介紹 4
2.1 2D NAND微縮及線以及技術瓶頸 4
2.2 雜訊種類 4
2.2.1 熱雜訊 4
2.2.2 散粒雜訊 Shot Noise 6
2.2.3 產生複合雜訊Generation-Recombination Noise 6
2.2.4 閃爍雜訊 (1/f noise) 7
2.2.5 隨機電報雜訊 8
2.3 隨電報雜訊中電子的捕捉以及釋放時間 8
2.4 小結 8
第三章 NAND CELL特性及雜訊量測 11
3.1 NAND快閃記憶體介紹 11
3.1.1 NAND CELL的結構 11
3.2 NAND CELL的操作模式 12
(a) 寫入 12
(b) 抹除 12
(c) 讀取 12
3.3 量測機台介紹 13
3.4 RTN的獲取 13
3.4.1 全自動機台的量測 14
3.4.2 半自動機台的量測 14
3.4.3 寫入/抹除循環測試後臨界電壓的偏移現象 15
3.5 RTN特性之變化 16
3.5.1 Cycling Effect 16
3.5.2 Different State Effect 17
3.5.3讀取偏壓之影響 17
3.5.4 Self-Recovery Effect 18
3.6 小結 18
第四章 不同的製程在產品上對RTN的影響結果及分析 40
4.1 本章介紹 40
4.2 字元線間氧化層厚度對RTN的影響 40
4.3 不同通道氧化層厚度對於RTN的影響 41
第五章 結論 58
REFERENCE 60



[1] M.-H. Tsai and T.-P. Ma, “The impact of device scaling on the current fluctuations in MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 2061–2068, Nov. 1994.
[2] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Ep-worth, and D. M. Tennant, “Discrete resistance switching in submicrometer sili-con inversion layers: Individual interface traps and low frequency (1/f) noise,” Phys. Rev. Lett., vol. 52, no. 3, pp. 228–231, Jan.1984.
[3] J.-H. Lee, S.-Y. Kim, I. Cho, S. Hwang, and J.-H. Lee, “1/f noise characteristics of sub-100 nm MOS transistors,” J. Semicond. Technol. Sci.,vol. 6, no. 1, pp. 38–42, Mar. 2006.
[4] H. H.Mueller andM. Schulz, “Random telegraph signal: An atomic probe of the local current in field-effect transistors,” J. Appl. Phys., vol. 83, pp. 1734–1741, Feb. 1998.
[5] A. L. McWhorter, “1/f noise and germanium surface properties,” in Semiconduc-torSurface Physics, R.H. Kingston, Ed. Philadelphia, Pennsylvania: Univ. Penn-sylvania Press, 1957, pp. 207–228.
[6] J. P. Campbell, J. Qin, K. P. Cheung, L. C. Yu, J. S. Suehle, A. Oates, and K. Sheng, “Random telegraph noise in highly scaled nMOSFETs,” in Proc. 47th IEEE Int. Rel. Phys. Symp., 2009, pp. 382–388.
[7] M. A. Amato and B. K. Ridley, “A comparison of simple theoretical models for the photoionisation of impurities in semiconductors,” J. Phys. C: Solid State Phys., vol. 13, pp. 2027–2039, 1980.
[8] W. Shockley andW. T. Read, Jr., “Statistics of the recombinations of holes and electrons,” Phys. Rev., vol. 87, pp. 835–842, 1952.
[9] A. Palma, A. Godoy, J. A. Jim´enez-Tejada, J. E. Carceller, and J. A. L´opez-Villanueva, “Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures,” Phys. Rev. B, vol. 56, pp. 9565–9574, 1997.
[10] C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by mul-tiphonon emission in GaAs and GaP,” Phys. Rev. B, vol. 15, no. 2, pp. 989–1016, 1977.
[11] K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. Royal Soc. London A, vol. 204, no. 1078, pp. 406–423, Dec. 1950.
[12] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructures: A new per-spective on individual defects, interface states and low-frequency (1/f) noise,” Adv. Phys., vol. 38, no. 4, pp. 367–468, 1989.
[13] M. Schulz and N. M. Johnson, “Evidence for multiphonon emission from inter-face states in MOS structures,” Solid State Commun., vol. 25, pp. 481–484, Feb. 1978.
[14] M. Schulz and N. M. Johnson, “ERRATA Evidence for multiphonon emission from interface states in MOS structures,” Solid State Commun.,vol. 25, pp. 481–484, Apr. 1978.
[15] F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys.Rev. B, vol. 5, pp. 4891–4899, 1972.
[16] Y. Ma, Z. Li, L. Liu, L. Tian, and Z. Yu, “Effective density-of-states approach to QM correction in MOS structures,” Solid-State Electron., vol. 44, pp. 401–407, 2000.
[17] H. Lee, Y. Yoon, S. Cho, and H. Shin, “Accurate extraction of the trap depth from RTS noise data by including poly depletion effect and surface potential var-iation in MOSFETs,” IEICE Trans. Electron., vol. E90-C, no. 5, pp. 968–972, May 2007.
[13] J. Jang, H. S. Kim, W. Cho, H. Cho, Jinho Kim, S. I. Shim, Younggoan, J. H. Jeong, B. K. Son, D. W. Kim, Kihyun, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, D. Chung, H. C. Moon, Sungmin Hwang, J. W. Lee, Y. H. Son, U. I. Chung, W. S. Lee, “Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory,” in Proc. Symp. VLSI Technology Dig., pp. 192-193, 2009.
[14] E. Nowak, J. H. Kim, H. Kwon, Y. G. Kim, J. S. Sim, S. H. Lim, D. S. Kim, K. H. Lee, Y. K. Park, J. H. Choi, C. Chung, “Intrinsic fluctuations in Vertical NAND flash memories,” in Proc. Symp. VLSI Technology Dig., pp. 21-22, 2012
[15] M. Toledano-Luque, R. Degraeve, P. J. Roussel, V. Luong, B. Tang, J. G. Lisoni, C. L.Tan, A. Arreghini, G. Van den bosch, G. Groeseneken, J. Van Houdt, “Sta-tistical spectroscopy of switching traps in deeply scaled vertical poly-Si channel for 3D memories,” in IEDM Tech. Dig., pp. 562-565, 2013
[16] H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S. Narumi, K.Tokami, S. Kamohara, O. Tsuchiya, “The impact of random telegraph signals on the scaling of multilevel flash memories,” in Proc. Symp. on VLSI Technolo-gy, pp. 112-113, 2006
[17] K.K. Huang, P.K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFET's,” IEEE Electron Dev. Lett., vol. 11, p. 90, 1990
[18] A. Asenov, R. Balasubramaniam, A.R. Brown, and J. H. Davies, “RTS ampli-tudes indecananometer MOSFETs: 3D simulation study,” IEEE Trans. Electron Devices, vol.3715, no. 3, pp. 839-845, Mar 2003
[19] R. Degraeve, M. Toledano-Luque, A. Arreghini, B. Tang, E. Capogreco, J. G. Lisoni, Ph. Roussel, B. Kaczer, G. Van den bosch, G. Groeseneken, J. Van Houdt, “Characterizing grain size and defect energy distribution in vertical SONOS poly-Si channels by means of a resistive network model,” in IEDM Tech. Dig., pp. 558-561, 2013
[20] V. A. Kochelap, V.N. Sokolov, O.M. Bulashenko, J.M. Rubi, “Theory of surface noise under Coulomb correlations between carriers and surface states,” Journal of Applied Physics, Vol. 92, pp.5347-5358, 2002
[21] M. Toledano-Luque, R. Degraeve, P. J. Roussel, V. Luong, B. Tang, J. G. Lisoni, C. L. Tan, A. Arreghini, G. Van den bosch, G. Groeseneken, J. Van Houdt, “Sta-tistical spectroscopy of switching traps in deeply scaled vertical poly-Si channel for 3D memories,” in IEDM Tech. Dig., pp. 562-565, 2013
[22] T. Grasser, H. Reisinger, P. -J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, “Thetime dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability,” in IRPS., pp.16-25, 2010.
[23] Y. Fukuzumi, Y. Matsuoka, M. Kito, M. Sato, H. Tanaka, Y. Nagata, Y. Iwata, H. Aochi,A. Nitayama, “Optimal integration and characteristics of vertical array de-vices for ultra-high density, bit-cost scalable flash memory” in IEDM Tech. Dig., pp. 449-452,K. Parat, VLSI-TSA, pp. 101-102, 2009
[24] K. S. Seol, et al., VLSI Tech Symp. Digest, pp. 127-128, 2010
[25] A. Torsi et al., IEEE TED vol. 58, no. 1, pp. 11-16, 2011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔