|
[1] Apache Spark --- lightning-fast cluster computing. https://spark.apache.org/. [2] Mesosaurus --- Mesos task load simulator framework for (cluster and Mesos) performance analysis. https://github.com/mesosphere/mesosaurus. [3] MPI forum. http://mpi-forum.org/. [4] TensorFlow. https://www.tensorflow.org/. [5] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large clusters. Communications of the ACM 51, 1 (2008), 107-113. [6] Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001), 1189-1232. [7] Friedman, J. H. Stochastic gradient boosting. Computational Statistics & Data Analysis 38, 4 (2002), 367-378. [8] Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., and Stoica, I. Dominant resource fairness: Fair allocation of multiple resource types. In NSDI (2011), vol. 11, pp. 24-24. [9] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H., Shenker, S., and Stoica, I. Mesos: A platform for fine-grained resource sharing in the data center. In NSDI (2011), vol. 11, pp. 22-22. [10] Lee, G., and Katz, R. H. Heterogeneity-aware resource allocation and scheduling in the cloud. In HotCloud (2011). [11] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (2010), ACM, pp. 135-146. [12] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Resource management with deep reinforcement learning. In HotNets (2016), pp. 50-56. [13] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830. [14] Tesauro, G., Jong, N. K., Das, R., and Bennani, M. N. A hybrid reinforcement learning approach to autonomic resource allocation. In Autonomic Computing, 2006. ICAC'06. IEEE International Conference on (2006), IEEE, pp. 65-73. [15] Wang, W., Liang, B., and Li, B. Multi-resource fair allocation in heterogeneous cloud computing systems. IEEE Transactions on Parallel and Distributed Systems 26, 10 (2015), 2822-2835. [16] Winstein, K., and Balakrishnan, H. Tcp ex machina: Computer-generated congestion control. In ACM SIGCOMM Computer Communication Review (2013), vol. 43, ACM, pp. 123-134. [17] Yigitbasi, N., Willke, T. L., Liao, G., and Epema, D. Towards machine learning-based auto-tuning of mapreduce. In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International Symposium on (2013), IEEE, pp. 11-20. [18] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and Stoica, I. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of the 5th European conference on Computer systems (2010), ACM, pp. 265-278. [19] Zarchy, D., Hay, D., and Schapira, M. Capturing resource tradeoffs in fair multi-resource allocation. In Computer Communications (INFOCOM), 2015 IEEE Conference on (2015), IEEE, pp. 1062-1070.
|