|
References [1] Yongqi Liu, Qiuli Tong, Zhao Du, and Lantao Hu. Content-boosted restricted boltzmann machine for recommendation. pages 773–780, 2014. [2] Yuhao Wang and Jianyang Zeng. Predicting drug-target interactions using restricted boltzmann machines. Bioinformatics, 29:i126–i134, 2013. doi: http://doi.org/10.1093/bioinformatics/btt234. [3] Joseph A. DiMasi, Henry G. Grabowski, and Ronald W. Hansen. Innovation in the pharmaceutical industry: New estimates of r&d costs. Journal of Health Economics, 47:20–33, 2016. doi: https://doi.org/10. 1016/j.jhealeco.2016.01.012. [4] Bruce Booth and Rodney Zemmel. Prospects for productivity. Nature Reviews Drug Discovery, 3:451–456, 2004. doi: http://dx.doi.org/10. 1038/nrd1384. [5] Marnie L MacDonald, Jane Lamerdin, Stephen Owens, Brigitte H Keon, Graham K Bilter, Zhidi Shang, Zhengping Huang, Helen Yu, Jennifer Dias, Tomoe Minami, StephenWMichnick, and John KWestwick. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chemical Biology, 2:329–337, 2006. doi: http://dx.doi.org/10.1038/nchembio790. [6] Lei Xie, Li Xie, Sarah L. Kinnings, and Philip E. Bourne. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annual Review of Pharmacology and Toxicology, 52:361–379, 2012. doi: https://doi.org/10.1146/ annurev-pharmtox-010611-134630. [7] Alan C Cheng, Ryan G Coleman, Kathleen T Smyth, Qing Cao, Patricia Soulard, Daniel R Caffrey, Anna C Salzberg, and Enoch S Huang. Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25:71, 2007. doi: http://dx.doi.org/10. 1038/nbt1273. [8] Brian K Shoichet, Susan L McGovern, Binqing Wei, and John J Irwin. Lead discovery using molecular docking. Current Opinion in Chemical Biology, 6:439–446, 2002. doi: https://doi.org/10.1016/ S1367-5931(02)00339-3. [9] Matthias Rarey, Bernd Kramer, Thomas Lengauer, and Gerhard Klebe. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261:470–489, 1996. doi: https://doi.org/10.1006/jmbi.1996.0477. [10] Michael J Keiser, Bryan L Roth, Blaine N Armbruster, Paul Ernsberger, John J Irwin, and Brian K Shoichet. Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 25:197, 2007. doi: http://dx.doi.org/10.1038/nbt1284. [11] Hiroaki Yabuuchi, Satoshi Niijima, Hiromu Takematsu, Tomomi Ida, Takatsugu Hirokawa, Takafumi Hara, Teppei Ogawa, Yohsuke Minowa, Gozoh Tsujimoto, and Yasushi Okuno. Analysis of multiple compound protein interactions reveals novel bioactive molecules. 2011. [12] Kevin Bleakley and Yoshihiro Yamanishi. Supervised prediction of drugtarget interactions using bipartite local models. Bioinformatics, 25:2397–2403, 2009. doi: http://doi.org/10.1093/bioinformatics/ btp433. [13] Xing Chen, Ming-Xi Liu, and Gui-Ying Yan. Drug-target interaction prediction by random walk on the heterogeneous network. Molecular BioSystems, 8:1970–1978, 2012. doi: http://dx.doi.org/10.1039/ C2MB00002D. [14] Feixiong Cheng, Chuang Liu, Jing Jiang, Weiqiang Lu, Weihua Li, Guixia Liu, Weixing Zhou, Jin Huang, and Yun Tang. Prediction of drug-target interactions and drug repositioning via networkbased inference. PLOS Computational Biology, 8(5):1–12, 05 2012. doi: 10.1371/journal.pcbi.1002503. URL https://doi.org/10. 1371/journal.pcbi.1002503. [15] Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang, Xiao-Li Li, and Jie Zheng. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29(2):238–245, 2013. doi: 10.1093/bioinformatics/bts670. URL http://dx.doi.org/10. 1093/bioinformatics/bts670. [16] Stefan Gnther, Michael Kuhn, Mathias Dunkel, Monica Campillos, Christian Senger, Evangelia Petsalaki, Jessica Ahmed, Eduardo Garcia Urdiales, Andreas Gewiess, Lars Juhl Jensen, Reinhard Schneider, Roman Skoblo, Robert B. Russell, Philip E. Bourne, Peer Bork, and Robert Preissner. Supertarget and matador: resources for exploring drug-target relationships. Nucleic Acids Research, 36:D919–D922, 2008. doi: 10.1093/nar/gkm862. URL http://dx.doi.org/10. 1093/nar/gkm862. [17] Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Minoru Kanehisa. Prediction of drugtarget interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24:i232–i240, 2008. doi: 10.1093/bioinformatics/btn162. [18] Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, and Shanfeng Zhu. Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Briefings in Bioinformatics, 15(5):734–747, 2014. doi: 10.1093/bib/bbt056. URL http: //dx.doi.org/10.1093/bib/bbt056. [19] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006. ISSN 0036-8075. doi: 10.1126/science.1127647. URL http: //science.sciencemag.org/content/313/5786/504. [20] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006. doi: 10.1162/neco.2006.18.7. 1527. URL https://doi.org/10.1162/neco.2006.18. 7.1527. PMID: 16764513. [21] Abdel rahman Mohamed, George Dahl, and Geoffrey Hinton. Deep belief networks for phone recognition. 2009. [22] Geoffrey E Hinton and Ruslan R Salakhutdinov. Replicated softmax: an undirected topic model. pages 1607– 1614, 2009. URL http://papers.nips.cc/paper/ 3856-replicated-softmax-an-undirected-topic-model. pdf. [23] Ruslan Salakhutdinov. Learning and evaluating boltzmann machines. 2008. [24] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for collaborative filtering. pages 791–798, 2007. doi: 10.1145/1273496.1273596. URL http://doi.acm.org/ 10.1145/1273496.1273596. [25] Kostadin Georgiev and Preslav Nakov. A non-iid framework for collaborative filtering with restricted boltzmann machines. 28(3): 1148–1156, 17–19 Jun 2013. URL http://proceedings.mlr. press/v28/georgiev13.html. [26] Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte, Lianyi Han, Jane He, Siqian He, Benjamin A Shoemaker, Jiyao Wang, Bo Yu, Jian Zhang, and Stephen H Bryant. Pubchem substance and compound databases. Nucleic Acids Research, pages D1202–D1213, 2016. doi: 10.1093/nar/gkv951. URL http: //www.ncbi.nlm.nih.gov/pmc/articles/PMC4702940. [27] TheUniProtConsortium. Uniprot: the universal protein knowledgebase. Nucleic Acids Research, 45(D1):D158–D169, 2017. doi: 10.1093/nar/gkw1099. URL http://dx.doi.org/10.1093/ nar/gkw1099.
|