|
[1] Niedermeyer E. and da Silva F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams & Wilkins. 2004. ISBN 0-7817-5126-8. [2] Po-Chih Kuo, Yi-Ti Chen, Yong-Sheng Chen, Li-Fen Chen, Decoding the Perception of Endogenous Pain from Resting-state MEG, NeuroImage, 2016 http://www.sciencedirect.com/science/article/pii/S1053811916305183 [3] Sharbrough F, Chatrian G-E, Lesser RP, Lüders H, Nuwer M, Picton TW (1991): American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol 8: 200-2. [4] Ed Grabianowski,“How Brain-computer Interfaces Work,"HowStuffWorks.com, http://computer.howstuffworks.com/brain-computer-interface1.htm, 2007. [5] Y. M. Chi, Y. T. Wang, Y. Wang, C. Maier, T. P. Jung, and G. Cauwenberghs, “Dry and Noncontact EEG Sensors for Mobile Brain–Computer Interfaces," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.20, no.2, pp.228–235, March 2012. [6] available: http://www.bem.fi/book/13/13.htm [7] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier, and M. Pregenzer, “Current trends in graz brain-computer interface (bci) research,” Rehabilitation Engineering, IEEE Transactions on, vol. 8, no. 2, pp. 216–219, Jun 2000. [8] L. Penghai, and W. Baikun, “A Study on EEG Alpha Wave-based Brain-Computer Interface Remote Control System," Mechatronics and Automation, 2007. ICMA 2007. International Conference on,pp.3179–3184, Aug. 2007. [9] Gert Pfurtscheller and Christa Neuper, “Motor Imagery and Direct Brain–Computer Communication,” proceedings of the IEEE, vol. 89, no. 7, July 2001 [10] L. Bi, X. Fan, and Y. Liu, “EEG-Based Brain-Controlled Mobile Robots: A Survey," Human-Machine Systems, IEEE Transactions on, vol.43, no.2, pp.161–176, March 2013. [11] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals," Circulation, vol. 101, pp. e215-e220, 2000. [12] R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., Boston, McGraw Hill, 2000. [13] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck : Discrete-Time Signal Processing, Prentice Hall, ISBN 0-13-754920-2 [14] available: https://www.mathworks.com/help/wavelet/gs/from-fourier-analysis-to-wavelet-analysis.html [15] Schalk, Gerwin; Mellinger, Juergen (2010). A Practical Guide to Brain-Computer Interfacing with BCI2000 (1st ed.). Springer. [16] K. K. Ang, C. Guan, K. S. Chua, B. T. Ang, C. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, “A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation," Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 5981–5984, 3-6 Sept. 2009.
[17] M. R. Portnoff, “Representation of digital signals and systems based on short-time Fourier analysis,” ZEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 55-69, Feb. 1980. [18] Devijver, P. A., and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall, London, 1982 [19] Harris, F. J. (1978). "On the use of windows for harmonic analysis with the discrete Fourier transform". Proceedings of the IEEE. 66: 51. doi:10.1109/PROC.1978.10837. [20] JL Flanagan, Speech Analysis, Synthesis and Perception, Springer- Verlag, New York, 1972 [22] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006, pp 192. [23] Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons, 2001, pp 123. [24] Altman, N. S. (1992). "An introduction to kernel and nearest-neighbor nonparametric regression". The American Statistician. 46 (3): 175–185. doi:10.1080/00031305.1992.10475879. [25] C. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition," in Proceeds of Int. Conference on Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1988. [26] Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf (2004). "A primer on kernel methods". Kernel Methods in Computational Biology. [27] Graves, Alex; and Schmidhuber, Jürgen; Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), Advances in Neural Information Processing Systems 22 (NIPS'22), December 7th–10th, 2009, Vancouver, BC, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552 [28] DREYFUS, STUART E. (1990). "Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure". Journal of Guidance, Control, and Dynamics. 13 (5): 926–928. ISSN 0731-5090. doi:10.2514/3.25422. [29] Kohavi, Ron. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. 1995, 2 (12): 1137–1143. (Morgan Kaufmann, San Mateo) [30] Ana Loboda, Alexandra Margineanu, Gabriela Rotariu, and Anca Mihaela Lazar. “Discrimination of EEG-Based Motor Imagery Tasks by Means of a Simple Phase Information Method.” (IJARAI) International Journal of Advanced Research in Artificial Intelligence, Vol. 3, No.10, 2014 [31] E. Bou Assi1, S. Rihana2, M. Sawan1. “33% Classification Accuracy Improvement in a Motor Imagery Brain Computer Interface.” Journal of Biomedical Science and Engineering. Vol.10 No.06(2017), Article ID:77330,16 pages 10.4236/jbise.2017.106025
|