(3.220.231.235) 您好!臺灣時間:2021/03/08 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許凱碩
研究生(外文):Hsu, Kai-Shuo
論文名稱:基於光時域反射儀的周界入侵感測系統之理論模擬和入侵定位演算法研究
論文名稱(外文):Investigation and Simulation of an OTDR-based Perimeter Intrusion Detection System and Its Intrusion Locating Algorithm
指導教授:鐘太郎
指導教授(外文):Jong, Tai-Lang
口試委員:王立康
口試日期:2018-07-31
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:周界入侵感測系統光時域反射儀定位演算法
外文關鍵詞:perimeter intrusion detection systemOTDRlocating algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於光時域反射儀的光纖周界入侵感測系統主要是利用光波散射現象中的背向分量來作訊號的量測和分析處理。
本論文針對此種周界入侵感測系統作訊號上的分析,利用簡化計算量後的矩陣形式推導其數學理論模型,再用軟體依據此數學模型模擬出訊號波形,套用差值法和移動平均差值法對模擬訊號作入侵定位點的判斷,並對以上兩種演算法作定位誤差的比較,發現移動平均差值法幾乎就能精準地定位模擬訊號的入侵擾動點。
並利用王立康教授實驗室所架設之8800公尺光纖的周界入侵感測系統進行實驗,以壓電式光纖拉伸器之縮脹現象來模擬入侵訊號,入侵位置分別為距離光纖入口端500公尺、4400公尺、4900公尺和8800公尺處,進行多次實驗量測。針對量測所得訊號做定位處理,首先精準地定位實際訊號的有效距離量測範圍,再進行定位演算。定位方面除了移動平均差值法以外,加入了本論文所提之小波低通差值法,以及頻譜總和定位法,將上述三種演算法對實際訊號作定位誤差的比較,發現除了入侵位置為500公尺以外,其他不論是4400公尺、4900公尺或8800公尺,小波低通差值法在入侵定位上都有最佳的表現。
The fiber perimeter intrusion detection system based on the optical time domain reflectometer (OTDR) mainly uses the backscattering phenomenon in the light wave to analyze and locate the intrusion position. To analyze the signal of this fiber OTDR perimeter intrusion detection system, theoretical backscattered signal model of delta function approximated scatterers in [31] is studied. A Matlab program is developed to simulate backscattered OTDR light intensity signal under various intrusion disturbance and detector noise scenarios. The differential method and moving differential method are applied to the simulation signals to determine the intrusion location. Location errors of the two algorithms under various noise levels are compared and discussed. It is found that the moving differential method can locate the intrusion point from the signal accurately.
An 8.8 km fiber OTDR prototype system is built in Professor Likarn Wang’s Lab. Real OTDR signals under various disturbances controlled by PZT at 0.5 km, 4.4 km, 4.9 km and 8.8 km are recorded. They are processed by moving differential method to determine the intrusion location. In addition to the moving differential method, the wavelet-lowpass differential method and sum of magnitude spectrum method are proposed to estimate the intrusion location. By comparing the location errors, it is found that the wavelet-lowpass differential method performed better than the other two methods in intrusion at 4.4 km, 4.9 km and 8.8 km cases.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究背景和動機 1
1.3 文獻回顧 2
1.3.1 周界入侵感測系統種類 2
1.3.2 周界入侵感測系統評估[26] 3
1.3.3 基於光纖感測器的周界入侵感測系統 4
1.4 論文貢獻 4
1.5 論文架構 4
第二章 硬體架構與理論模型 6
2.1 前言 6
2.2 光時域反射儀簡介 6
2.2.1 瑞利散射(Rayleigh Scattering) 7
2.2.2 背向散射波形(Trace of Back Scattering) 7
2.2.3 事件位置(Location of Event) 8
2.2.4 動態測量範圍(Dynamic Range) 8
2.2.5 菲涅耳反射(Fresnel Reflection) 8
2.3 光學硬體架構 9
2.3.1 雷射脈衝光源之光路架構 9
2.3.2 周界入侵感測系統架構 9
2.4 光電元件 10
2.4.1 雷射光源(Light Amplification by Stimulated Emission of Radiation, Laser) 10
2.4.2 光耦合器(Optic Couplers) 10
2.4.3 光隔離器(Optic Isolators, OIS) 10
2.4.4 光纖波長分波多工器(Wavelength Division Multiplexing, WDM) 11
2.4.5 光循環器(Optic Circulators) 11
2.4.6 壓電式光纖拉伸器(Piezoelectric Fiber Stretcher, PZT) 11
2.4.7 光偵測器(Optic Photodetectors, PD) 11
2.4.8 資料擷取器(Data Acquisition System, DAQ) 11
2.5 基於光時域反射儀的周界入侵感測系統 12
2.5.1 散射訊號之數學模型 12
第三章 軟體模擬 17
3.1 前言 17
3.2 軟體開發環境 17
3.3 一般入侵定位演算法簡介 17
3.3.1 差值法(Differential) 17
3.3.2 移動平均法(Moving Averaging)和移動差值法(Moving Differential)[36] 18
3.4 模擬結果 19
3.4.1 不考量雜訊 19
3.4.2 加入雜訊的考量 22
3.4.3 入侵定位誤差值比較 26
3.5 總結 27
第四章 實驗結果 29
4.1 前言 29
4.2 實驗環境條件 29
4.3 週期波形有效距離量測範圍定位法 29
4.4 移動平均差值法之訊號雜訊比 32
4.5 小波低通差值法 34
4.5.1 小波去噪(Wavelet Denoising) 34
4.5.2 低通濾波(Lowpass Filtering) 35
4.5.3 演算法步驟和流程圖(Steps and Flowchart of Algorithm) 39
4.6 頻譜總和定位法 41
4.6.1 演算法步驟 42
4.7 實驗結果與討論 43
4.7.1 入侵定位結果 43
4.7.2 入侵定位誤差值比較 46
4.8 總結 55
第五章 結論與未來展望 57
參考文獻 59
[1] Seed, Willian R. "Radar intrusion detection system." U.S. Patent No. 4,952,939. 28 Aug. 1990.
[2] Liddiard, Kevin C., Brian W. Rice, and Rodney J. Watson. "Infrared intrusion sensor." U.S. Patent No. 5,465,080. 7 Nov. 1995.
[3] Mahmoud, Seedahmed S., and Jim Katsifolis. "Robust event classification for a fiber optic perimeter intrusion detection system using level crossing features and artificial neural networks." SPIE Defense, Security, and Sensing. 2010.
[4] Dandridge, Anthony, and Alan D. Kersey. "Overview of Mach-Zehnder sensor technology and applications." OE/Fiber LASE'88. 1989.
[5] Gildersleeve, Joseph S. "The Mach-Zehnder coupler." (1997).
[6] Spammer, Stephanus J., Pieter L. Swart, and Anatoli A. Chtcherbakov. "Merged Sagnac-Michelson interferometer for distributed disturbance detection." Journal of lightwave technology 15.6 (1997): 972-976
[7] Xiaojun Fang, "A variable-loop Sagnac interferometer for distributed impact sensing," in Journal of Lightwave Technology, vol. 14, no. 10, pp. 2250-2254, Oct 1996.
[8] JUAN C. JUAREZ, DISTRIBUTED FIBER OPTIC INTRUSION SENSOR SYSTEMFOR MONITORING LONG PERIMETERS, PHD Dissertation, Texas A&M University, 2005.
[9] Yi LI, Yi ZHOU, Li ZHANG, Mengqiu FAN, and Jin LI, “Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump,” Photonic Sensors, 2015, 5(4): 345–350.
[10] Patterson, I. J. "The control of fox movement by electric fencing." Biological Conservation 11.4 (1977): 267-278.
[11] Hone, J., and B. Atkinson. "Evaluation of fencing to control feral pig movement." Wildlife Research 10.3 (1983): 499-505.
[12] Yousefi, Ali, Alireza Dibazar, and Theodore Berger. "Intelligent fence intrusion detection system: detection of intentional fence breaching and recognition of fence climbing." 2008 IEEE Conference on Technologies for Homeland Security.
[13] Chraim, Fabien, and Kristofer Pister. "Smart fence: Decentralized sequential hypothesis testing for perimeter security." International Conference on Sensor Systems and Software. 2013
[14] Pevler, A. E. "Security implications of high-power microwave technology." Technology and Society, 1997.'Technology and Society at a Time of Sweeping Change'. Proceedings., 1997 International Symposium on.
[15] Peichl, M., et al. "Passive microwave remote sensing for security applications." 2007 European Radar Conference.
[16] Weber, Peter, et al. "Low-cost radar surveillance of inland waterways for homeland security applications." IEEE Radar Conference. 2004.
[17] Tahmoush, D., and J. Silvious. "Radar microDoppler for security applications: Modeling men versus women." 2009 IEEE Antennas and Propagation Society International Symposium.
[18] Keller, Hans J. "Advanced passive infrared presence detectors as key elements in integrated security and building automation systems." IEEE, CH3372− 0/93 (1993).
[19] Moghavvemi, M., and Lu Chin Seng. "Pyroelectric infrared sensor for intruder detection." Analog and digital techniques in electrical engineering. Conference. 2004.
[20] Zappi, Piero, Elisabetta Farella, and Luca Benini. "Tracking motion direction and distance with pyroelectric IR sensors." IEEE Sensors Journal 10.9 (2010): 1486-1494.
[21] Lee, Suk, Kyoung Nam Ha, and Kyung Chang Lee. "A pyroelectric infrared sensor-based indoor location-aware system for the smart home." IEEE Transactions on Consumer Electronics 52.4 (2006).
[22] Griffiths, Barry. "Developments in and applications of fibre optic intrusion detection sensors." Security Technology.1995.
[23] Szustakowski, M., et al. "Recent development of fibre optic sensors for perimeter security." Modern Problems of Radio Engineering, Telecommunications and Computer Science. 2002.
[24] Szustakowski, Mieczyslaw, Wiesław M. Ciurapinski, and Marek Zyczkowski. "Trends in optoelectronic perimeter security sensors." Proc. SPIE. Vol. 6736. 2007.
[25] Juarez, Juan C., et al. "Distributed fiber-optic intrusion sensor system." Journal of lightwave technology 23.6 (2005): 2081-2087.
[26] Armstrong, D., and C. Peile. "Perimeter intruder detection systems performance standard." Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology.
[27] McAulay, Alastair D., and Jian Wang. "A Sagnac interferometer sensor system for intrusion detection and localization." Defense and Security. 2004.
[28] Spammer, Stephanus J., Pieter L. Swart, and Anatoli A. Chtcherbakov. "Merged Sagnac-Michelson interferometer for distributed disturbance detection." Journal of lightwave technology 15.6 (1997): 972-976.
[29] Hua, Ping, et al. "Integrated optical dual Mach–Zehnder interferometer sensor." Sensors and Actuators B: Chemical 87.2 (2002): 250-257.
[30] P Healey, ”Instrumentation principles for optical time domain reflectometry,”J. Phys. E: Sci. Instrum. 19 334, 1986.
[31] Qin Li, Chunxi Zhang, Lijing Li, and Xiang Zhong, "Localization mechanisms and location methods of the disturbance sensor based on phase-sensitive OTDR", Optik 125 (2014) 2099–2103.
[32] Juarez, Juan C., et al. "Distributed fiber-optic intrusion sensor system." Journal of lightwave technology 23.6 (2005): 2081-2087.
[33] Sergey V. Shatalin, Vladimir N. Treschikov, and Alan J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” APPLIED OPTICS, Vol. 37, No. 24, 20 August 1998
[34] Understanding OTDRs, GN Nettest-Optical division Part # 33881, Rev.A, 2000.
[35] "MATLAB – MathWorks, " http://www.mathworks.com/
[36] Yuelan Lu, Tao Zhu, Liang Chen, and Xiaoyi Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 22, NOVEMBER 15, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔