跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:普莉亞
研究生(外文):Karuppuswamy, Priyadharsini
論文名稱:非富勒烯電子傳輸層與非鉛鈣鈦礦吸光層提升鈣鈦礦太陽能電池之永續性
論文名稱(外文):Enhancement of sustainability of perovskite solar cells through the fabrication of fullerene-free electron transport layer and lead-free perovskite-like absorber layer
指導教授:王本誠朱治偉
指導教授(外文):Wang, Pen-ChengChu, Chih-Wei
口試委員:林皓武陳永芳賴朝松
口試委員(外文):Lin, Hao-WuChen, Yang-FangLai, Chao-Sung
口試日期:2018-06-05
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:170
中文關鍵詞:升鈣鈦礦太阳能电池升鈣鈦礦太阳能电池非富勒烯非鉛非富勒烯锑钙钛矿之永續性
外文關鍵詞:Perovskite solar cellsPerovskite solar cellsfullerene freelead freeelectron transport layerantimony perovskitesustainability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
摘要
世界對能源的需求不斷成長,迫使研究和開發更便宜和更環保的替代可持續能源。太陽能是最好的可用綠色能源,在過去的幾十年中進行了廣泛的研究。市售的第一代太陽能電池由矽製成;儘管它們具有很高的能量轉換效率(PCE),但它們需要高能量製程及其需要精密的製造工藝而受到限制。第一代太陽能電池技術非常成熟,幾乎沒有改進的餘地,後來第二代光伏發展成為非晶矽,II-IV和III-V薄膜光伏,儘管具有合理高的PCE,但其也遭受高成本,材料稀有,複雜的製造工藝和材料毒性限制。第三代光伏電池,包括染料敏化(DSSC),有機太陽能電池(OSC)和量子點/奈米材料太陽能電池,其具有製程簡單且低成本製造的優點。有機-無機雜化(OIH)材料具有無機半導體和有機(聚合物或小分子)材料的組合性質。OIH太陽能電池可以採用無機材料的優點,如穩定性,良好的光吸收性,高載流子遷移率的方便的製程,以及利用有機物的優點,例如重量輕,靈活性強,可調分子結構用於能帶對準和溶液可加工性等優點。
現今光伏發電的熱門話題包括有機金屬鹵化物鈣鈦礦,在短短的8年時間裡,其能量轉換效率(PCE)從3.8%提高到22.1%,成長幅度相當大。鈣鈦礦太陽能電池(PSCs)的高PCE受益於鈣鈦礦的獨特性質,如高吸收係數、大載流子擴散長度、長載流子壽命、小激子結合能和直接帶隙。鈣鈦礦太陽能電池要實現如此高的PCE的方式包括理解結晶動力學,影響結晶的因素,控制器件處理參數以獲得無缺陷晶體和不同層之間的界面工程。鈣鈦礦太陽能電池如此高的能量轉換效率和矽基太陽能電池相媲美。鈣鈦礦太陽能電池由於其簡單的加工性,與大規模生產的兼容性,材料豐富性和卓越的光電性能,PSC更有利於商業化。 儘管具有良好的性能和高效率,但仍有一些阻礙其商業化的因素。它們具有鉛的毒性,對空氣和濕氣不穩定,使用價格昂貴且不太環保的富勒烯,以及使用微酸性的PEDOT:PSS。為了解決這些問題,我們提出替代材料用於富勒烯基電子傳輸層(ETL)和使用無毒金屬銻(Sb)以取代有毒的鉛(Pb)鈣鈦礦材料。
作為常用電子傳輸層(ETL)的富勒烯衍生物PCBM具有以下缺點,高生產成本、光化學不穩定性、在高溫下聚集的傾嚮導致形態不穩定性及後製造結晶和合成不靈活性。N型共軛Perylene diimide分子具有化學穩定性、耐光降解性、相對易於合成操作、成本更低且它們在工業上用作顏料。本研究提出在倒置平面異質結鈣鈦礦太陽能電池中使用n型共軛Perylene diimide分子作為PCBM ETL的替代材料。使用PDI小分子代替PCBM可獲得11%良好的能量轉換效率。
接著我們研究了benzo[ghi]perylenetriimide(BPTI)衍生物在一系列PSC中作為新型ETL的材料。BPTI在π-共軛平面上通過沿著原始PDI骨架上的短軸的五元酰亞胺環擴展。與PDI相比,BPTI顯示通過連接在五元酰亞胺位置上的取代基團直接獲得官能團。這激勵我們探索並製造新的非平面π共軛電子受體的可能方式。扭曲-BPTI作為替代ETL材料,其結果為約11.7%的能量轉換效率。
關於鉛基鈣鈦礦太陽能電池商業化的另一個主要問題是環境中有毒金屬鉛(Pb)的存在及其在空氣和濕氣中的化學不穩定性。最初錫(Sn)被提出來取代鉛,因為它擁有類似的價態以取代鉛,但是直到現在仍無法達到與鉛基鉛相同的效率。另外,Sn的氧化容易引起元件問題,因此在穩定性方面,不考慮將其作為Pb的替代品。為了替代對環境有毒的鉛基鈣鈦礦,我們建議使用銻基鈣鈦礦材料,它們通過Pb的異質替代形成A3B2X9型鈣鈦礦材料。我們的研究是銻基鈣鈦礦太陽能電池的先驅報告之一。最初我們使用簡單的溶液製程獲得1%的效率,以形成MA3Sb2I9鈣鈦礦層。後來我們增加一種添加劑於鈣鈦礦材料,用於提高氯苯的膜質量和抗溶劑處理能力,以提高結晶度使能量轉換效率達到2.1%。最後,我們在電洞傳輸層和鈣鈦礦層之間導入了疏水性夾層,以促進形成大晶粒尺寸的晶體,並且達到2.8%PCE,這是迄今為止該材料最高的能量轉換效率元件。
The ever-growing energy demand of the world necessitates the research and development of alternate sustainable energy sources that are cheaper and greener. Solar energy is the unmatched forerunner of all the available clean energy sources with an extensive research being done in the past few decades. The commercially available first generation solar cells are made of Silicon; Although they have high power conversion efficiencies (PCEs), they require high energy manufacturing process, suffer from material inavailability and the need for sophisticated device fabrication processes; Also, the first generation solar cell technology is so mature that there is little room for improvement. Later, the second generation photovoltaics evolved into amorphous Si, II-IV and III-V thin film photovoltaics, which also suffer from high cost, material scarcity, complex manufacturing process and material toxicity, in spite of having reasonably high PCEs. In the third generation photovoltaics, the hybrid and multi-junction third generation solar cells, which include dye-sensitized (DSSC), organic solar cells (OSC) and quantum-dot/nanomaterial based solar cells have the advantages of simple and low cost manufacturing. Organic-inorganic hybrid (OIH) materials have the combined properties of inorganic semiconductors and organic (polymer or small molecules) materials. OIH solar cells could adopt the merits of inorganic materials, such as stability, enhanced light absorption, high carrier mobility and compatible fabrication process, and utilize the advantages of organics, such as light weight, flexiblility, adjustable molecular structures for energy band alignment and solution processability.
The hot topic of current generation photovoltaics consist of organo metal halide perovskites that has attained an unprecedented growth from 3.8% to 22.1% of power conversion efficiency (PCE) in a short span of 8 years. Such high PCEs in perovskite solar cells (PSCs) are benefited from the unique properties of the perovskites such as high absorption coefficient, large carrier diffusion lengths, long carrier lifetimes, small exciton binding energies and a direct bandgap. The path to achieve such high PCEs comprised of understanding crystallization kinetics, factors affecting crystallization, controlling the device processing parameters to obtain defect-free crystals and interface engineering between different layers. This resulted in unexpected PCEs approaching its theoretical limits, rivalling Si-based solar cells. PSCs are more favorable for commercialization due to their simple processability, compatibility to large-scale production, material abundance and remarkable optoelectronic properties. In spite of favorable properties and high efficiencies, there are a few factors which hinder their commercialization. They are toxicity of lead, instability to air and moisture, use of fullerenes which are costlier and not very eco-friendly and use of PEDOT:PSS that is slightly acidic. To address a few of these problems, we propose alternative materials for fullerene-based electron transport layers (ETLs) and alternate non-toxic metal, Antimony (Sb) to replace toxic Lead (Pb)-based perovskites.
PCBM, a fullerene derivative, which is the commonly used electron transport layer (ETL) has the following disadvantages- high production costs, photochemical instability, tendency to aggregate at high temperatures leading to morphological instability, postfabrication crystallisation and synthetic inflexibility. N-type conjugated Perylene diimide based molecules are chemically robust, resistant to photodegradation, relatively easy to manipulate synthetically, possess tunable energy levels, cheaper and they are in industrial use as pigments. We propose the use of n-type conjugated perylene diimide based molecules as alternative materials for PCBM ETL in inverted planar heterojunction perovskite solar cells. A decent PCE of 11% was achieved with PDI small molecule in place of PCBM.
Later, we studied the use of benzo[ghi]perylenetriimide (BPTI) derivatives as novel ETL materials in a series of PSCs. The BPTI is expanded on the π-conjugated plane by a five-membered imide ring along the short axis on the original PDI backbone. Compared to PDI, BPTI shows straightforward access to chemical functionality through substituted groups attached on the five-membered imide position. This inspired us to explore possible strategies on making new non-planar π-conjugated electron acceptors. We achieved an efficiency of about 11.7% with the twisted-BPTI as the alternate ETL.
Another major concern regarding the commercialization of lead-based perovskite solar cells is the presence of environmentally toxic metal lead (Pb) and its chemical instability in air and moisture. Initially, Tin (Sn) was proposed to replace Lead as it can homogeneously substitute Pb due to similar valence state, but failed to achieve efficiencies as high as that of Pb-based ones till date. Also, the fact that Sn gets oxidized easily imposes hindrance to consider it as an alternative for Pb in terms of stability. To replace lead-based perovskites which are environmentally toxic, we propose the use of antimony-based perovskite materials, which forms A3B2X9 type perovskites by heterogeneous substitution of Pb. Our work is one of the pioneer reports on Sb-based perovskite solar cells. Initially, we achieved 1% efficiency with a simple solution process to form MA3Sb2I9 perovskite layer. Later, we introduced an additive to enhance the film quality and anti-solvent treatment with Chlorobenzene to enhance the crystallinity resulting in 2.1% PCE. Finally, we introduced hydrophobic interlayer between the hole transport layer and the perovskite layer to facilitate the formation of large-grain size crystals and reached 2.8% PCE, which is one of the highest PCEs reported for this material until now.
Table of Contents
Abstract --------------------------------------------------------------------------------------------------iii
Acknowledgement --------------------------------------------------------------------------------------v
Table of content ----------------------------------------------------------------------------------------vii
List of tables --------------------------------------------------------------------------------------------xii
List of figures ------------------------------------------------------------------------------------------xiv
Chapter 1: Introduction--------------------------------------------------------------------------------1
1.1 Solar photovoltaics-----------------------------------------------------------------------------------1
1.2 Perovskite solar cells---------------------------------------------------------------------------------2
1.2.1 Device architecture------------------------------------------------------------------------4
1.2.1.1 Conventional n-i-p structure--------------------------------------------------4
1.2.1.2 Inverted p-i-n structure--------------------------------------------------------6
1.2.2 Operation mechanism of PSCs----------------------------------------------------------7
1.3 PSCs device characteristics-------------------------------------------------------------------------8
1.3.1 Short circuit current density (Jsc)-------------------------------------------------------8
1.3.2 The open-circuit voltage (Voc) ---------------------------------------------------------9
1.3.4 Fill Factor (FF)-------------------------------------------------------------------------10
1.3.5 Power conversion efficiency (PCE, η)----------------------------------------------10
1.4 Recent developments in Perovskite solar cells--------------------------------------------------10
1.4.1 One-step method-------------------------------------------------------------------------12
1.4.1.1 Role of solvents--------------------------------------------------------------12
1.4.1.2 Solvent engineering, Choice of precursors--------------------------------13
1.4.1.3 Role of precursors, additives------------------------------------------------16
1.4.2 Two-step crystallization-----------------------------------------------------------------17
1.4.3 Vapor phase crystallization-------------------------------------------------------------18
1.4.4 Issues and challenges--------------------------------------------------------------------19
1.4.4.1 Device stability---------------------------------------------------------------20
1.4.4.2 Operational stability----------------------------------------------------------23
1.4.4.3 Toxicity------------------------------------------------------------------------24
1.5 Objective and scope---------------------------------------------------------------------------------29
Chapter 2: Experimental section -------------------------------------------------------------------31
2.1. Fabrication of PSCs with PDI as ETL and MAPbI3-xBrx active layer---------------------31
2.1.1 Materials required------------------------------------------------------------------------31
2.1.2 Preparation of Methyl ammonium iodide (MAI)------------------------------------31
2.1.3 Preparation Methyl ammonium bromide (MABr)-----------------------------------32
2.1.4 Device fabrication-----------------------------------------------------------------------32
2.1.5 Material and device characterization--------------------------------------------------33
2.1.6 Energy level diagram--------------------------------------------------------------------34
2.2 Synthesis of BPTI-based ETL molecules and their PSC fabrication-------------------------35
2.2.1 Synthesis of PDI-C4---------------------------------------------------------------------35
2.2.2 Synthesis of BPTI------------------------------------------------------------------------35
2.2.3 Twisted BPTI dimer (tBPTI)-----------------------------------------------------------36
2.2.4 Steady state spectroscopic and electrochemical studies----------------------------37
2.2.5 Computational details-------------------------------------------------------------------37
2.2.6 Material characterization----------------------------------------------------------------37
2.2.7 Device fabrication and characterization-----------------------------------------------37
2.3 Synthesis of Antimony-based perovskite of the type A3B2X9--------------------------------40
2.3.1 Device fabrication-----------------------------------------------------------------------40
2.3.1.1 Solar cell-----------------------------------------------------------------------40
2.3.1.2 Photodetector------------------------------------------------------------------40
2.3.2 Material and device characterization--------------------------------------------------41
2.4 Introduction of hydrophobic interlayer to facilitate the crystallization of MA3Sb2I9 with large grain size-------------------------------------------------------------------------------------------41
2.4.1 Materials----------------------------------------------------------------------------------41
2.4.2 Device fabrication and characterization----------------------------------------------42
Chapter 3: PDI-based electron transport layer for PSCs--------------------------------------43
3.1 Background------------------------------------------------------------------------------------------43
3.2 Bandgap engineering of MAPbI3 by incorporation of Br-------------------------------------45
3.3 Perovskite solar cell characteristics--------------------------------------------------------------49
3.4 Competency of the new ETL ---------------------------------------------------------------------55
3.5 Final remarks----------------------------------------------------------------------------------------60
Chapter 4: The 3D Benzo perylene triimide (BPTI) based ETL for PSCs-----------------61
4.1 Background------------------------------------------------------------------------------------------61
4.2 Properties of BPTI-based molecules-------------------------------------------------------------64
4.3 Competency of BPTI-based molecules as alternate ETL to PCBM-------------------------69
4.4 Photovoltaic properties of perovskite solar cells-----------------------------------------------75
4.5 Final remarks
Chapter 5: Antimony (Sb)-based Lead-free perovskites of the formula A3B2X9-----------84
5.1 Background-----------------------------------------------------------------------------------------84
5.2. Characterization of the perovskite material, Methyl ammonium Antimony Iodide (MA3Sb2I9) with and without the additive of Hydroiodic acid------------------------------------86
5.3. Photovoltaic performance of MA3Sb2I9 based perovskite-like materials with/without HI in inverted PSCs-----------------------------------------------------------------------------------------98
5.4 Photodetector application-------------------------------------------------------------------------104
5.5 Final remarks---------------------------------------------------------------------------------------106
Chapter 6: Introduction of a hydrophobic interlayer between HTL and MA3Sb2I9 to facilitate large grain size formation---------------------------------------------------------------107
6.1 Background-----------------------------------------------------------------------------------------108
6.2 Structural characterization------------------------------------------------------------------------109
6.3 Photovoltaic device performance----------------------------------------------------------------114 6.4 Impact of the Pyrene interlayer and large grain size on device characteristics------------121 6.5 Final remarks---------------------------------------------------------------------------------------126
Chapter 7: Conclusion and future research directions---------------------------------------127
7.1 Conclusions-----------------------------------------------------------------------------------------127
7.2 Future research directions------------------------------------------------------------------------129
7.2.1. Project 1: Cl-PDI and BPTI based derivatives for electron transport layer (ETL) in PSCs – methodology----------------------------------------------------------------------129
7.2.1.1 . ClPDI based molecules---------------------------------------------------129
7.2.1.2 Overcoming the interfacial problems between perovskite/ETL by substituents in the ETL (ClPDI or BPTI) core-----------------------------------131
7.2.2 Project 2: Antimony based perovskite-like materials to replace Lead in PSCs to realize Lead-free PSCs - Methodology-----------------------------------------------------134
7.2.2.1 Idea----------------------------------------------------------------------------134
7.2.2.2. Sulphur doping by solid state reaction-----------------------------------134
References----------------------------------------------------------------------------------------------137
Appendix A: List of publications------------------------------------------------------------------162
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top