(54.236.58.220) 您好!臺灣時間:2021/03/06 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王 雋
研究生(外文):Wang, Chun
論文名稱:多頻道無線網路中支援異質服務品質保證之非同步無排程之上鏈傳輸
論文名稱(外文):Asynchronous Grant-Free Uplink Transmissions in Multichannel Wireless Networks with Heterogeneous QoS Guarantees
指導教授:張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員:李端興林華君
口試委員(外文):Lee, Duan-ShinLin, Hwa-Chun
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:47
中文關鍵詞:多重存取服務品質光學正交碼差集
外文關鍵詞:multiple accessquality of servicesoptical orthogonal codesdifference sets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們試圖在多頻道的無線網路裡非同步無排程之上鏈傳輸中,提供異
質的服務品質保證。我們所使用的多重存取頻道模型是傳統的碰撞頻道,在傳輸過程中相互部分重疊的封包會被完全丟包。對於此網路模型,在本論文裡提出兩種非同步 多頻道傳輸排程:(i) 延長質數碼基之非同步多頻道傳輸排程以及 (ii) 差集基之非同步 多頻道傳輸排程。延長質數碼基之非同步多頻道傳輸排程是由對一維延長質數碼做時間展開建構,差集基之非同步多頻道傳輸排程是由差集和有限投影平面建構。在本論文裡,我們展示出這兩套傳輸排程演算法只要在有源設備的總數不超過設定的閾參數,就能夠使一次成功傳輸的最大延遲限制在一個常數之下。此外,不同的設備可以有不同的流通保證量。藉由廣泛的模擬實驗,我們展示出兩種傳輸排程演算法在有源設備的總數超過設定的閾參數時,流通量都和隨機存取協定幾乎相同。
In this thesis, we study the problem of providing heterogeneous Quality-of-Service (QoS) guarantees for asynchronous grant-free uplink transmissions in multichannel wireless networks. The multiple access channel model is the classical collision channel, where partially overlapped packets during the transmissions are assumed to be completely lost. For such a network model, we propose two Asynchronous Multichannel Transmission Schedules (AMTS): (i) the EPC-based AMTS and (ii) the DS-based AMTS. The EPC-based AMTS is constructed by time-spreading one-dimensional extended prime code (EPC), and the DS-based AMTS is constructed by using difference sets (DS) and finite projective planes. We show for both scheduling algorithms that the maximum delay of a successful transmission of an active device can be upper bounded by a constant when the total number of active devices does not exceed a designed threshold parameter. Moreover, different devices are allowed to have different throughput (rate) guarantees. By conducting extensive simulations, we also show that the overall throughputs of both scheduling algorithms are almost identical to that of the random access protocol when the number of active devices exceeds the designed threshold parameter.
Contents 1
List of Figures 3
1 Introduction 4
2 Optical Orthogonal Codes 10
3 The EPC-based AMTS 14
3.1 Two-dimensional extended prime code . . . . . . . . . . . .14
3.2 The scheduling algorithm . . . . . . . . . . . . . . . . . 21
4 The DS-based AMTS 24
4.1 Difference sets and finite projective planes . . . . . . . 24
4.2 The synchronous modular clock sequence in a Galois field. .27
4.3 The scheduling algorithm . . . . . . . . . . . . . . . . . 29
5 Extensions 34
5.1 Extension to the continuous-time setting . . . . . . . . . 34
5.2 Supporting more devices . . . . . . . . . . . . . . . . . .35
6 Simulation Results 37
7 Conclusion 42
[1] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5g ultra-reliable and low-latency systems design,” in Networks and Communications (EuCNC), 2017 European Conference on. IEEE, 2017, pp. 1–5.
[2] M. Bennis, M. Debbah, and H. V. Poor, “Ultra-reliable and low-latency wireless communication: Tail, risk and scale,” arXiv preprint arXiv:1801.01270, 2018.
[3] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous cdma systems over awgn channel,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1616–1626, 2008.
[4] R. Hoshyar, R. Razavi, and M. Al-Imari, “Lds-ofdm an efficient multiple access technique,” in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st. IEEE, 2010, pp. 1–5.
[5] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8, no. 1, pp. 21–28, 1962.
[6] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Personal Indoor and MobileRadioCommunications(PIMRC),2013IEEE24thInternationalSymposium on. IEEE, 2013, pp. 332–336.
[7] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for internet of things,” in Vehicular Technology Conference (VTC Spring), 2016 IEEE 83rd. IEEE, 2016, pp. 1–5.
[8] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple access—a novel nonorthogonal multiple access for fifth-generation radio networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3185–3196, 2017.
[9] Q. Wang, R. Zhang, L. Yang, and L. Hanzo, “Non-orthogonal multiple access: A unified perspective,” IEEE Wireless Communications, 2018.
[10] J. Massey and P. Mathys, “The collision channel without feedback,” IEEE Transactions on Information Theory, vol. 31, no. 2, pp. 192–204, 1985.
[11] A.Sgora, D.J.Vergados, and D.D.Vergados, “A survey of tdma scheduling schemes in wireless multihop networks,” ACM Computing Surveys (CSUR), vol. 47, no. 3, p. 53, 2015.
[12] Y. Liu, L. Zhang, V. O. Liy, K.-C. Leungy, and W. Zhang, “Topology-transparent scheduling in mobile ad hoc networks supporting heterogeneous quality of service guarantees,” in Information Sciences and Systems (CISS), 2012 46th Annual Conference on. IEEE, 2012, pp. 1–6.
[13] I. Chlamtac and A. Faragó, “Making transmission schedules immune to topology changes in multi-hop packet radio networks,” IEEE/ACM Transactions on Networking (TON), vol. 2, no. 1, pp. 23–29, 1994.
[14] J.-H. Ju and V. O. Li, “An optimal topology-transparent scheduling method in multihop packet radio networks,” IEEE/ACM Transactions on Networking (TON), vol. 6, no. 3, pp. 298–306, 1998.
[15] Y. Liu, V. O. Li, K.-C. Leung, and L. Zhang, “Topology-transparent scheduling in mobile ad hoc networks with multiple packet reception capability,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 5940–5953, 2014.
[16] N. Abramson, “The aloha system: another alternative for computer communications,” in Proceedings of the November 17-19, 1970, fall joint computer conference. ACM, 1970, pp. 281–285.
[17] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An aloha protocol for multihop mobile wireless networks, ”IEEE Transactions on Information Theory, vol.52, no.2, pp. 421–436, 2006.
[18] B. S. Tsybakov and N. Likhanov, “Packet switching in a channel without feedback,” Problemy Peredachi Informatsii, vol. 19, no. 2, pp. 69–84, 1983.
[19] K. Momihara, M. Müller, J. Satoh, and M. Jimbo, “Constant weight conflict-avoiding codes, ”SIAM Journal on Discrete Mathematics, vol.21, no.4, pp.959–979, 2007.
[20] Y. Zhang, K. W. Shum, and W. S. Wong, “Strongly conflict-avoiding codes,” SIAM Journal on Discrete Mathematics, vol. 25, no. 3, pp. 1035–1053, 2011.
[21] F. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: design, analysis and applications,” Information Theory, IEEE Transactions on, vol. 35, no. 3, pp. 595–604, 1989.
[22] H. Chung and P. V. Kumar, “Optical orthogonal codes-new bounds and an optimal construction, ”IEEE Transactions on Information theory, vol.36, no.4, pp.866–873, 1990.
[23] G.-C. Yang and W. C. Kwong, “Performance analysis of optical cdma with prime codes,” Electronics Letters, vol. 31, no. 7, pp. 569–570, 1995.
[24] G.-C. Yang, “Variable-weight optical orthogonal codes for cdma networks with multiple performance requirements,” IEEE Transactions on Communications, vol. 44, no. 1, pp. 47–55, 1996.
[25] G.-C.Yang, W.C.Kwong, andC.-Y.Chang, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations,” in Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on. IEEE, 2004, pp. 367–367.
[26] W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical cdma,” IEEE transactions on communications, vol. 53, no. 1, pp. 117–123, 2005.
[27] Y.-C. Lin, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Construction of optimal 2d optical codes using (n, w, 2, 2) optical orthogonal codes,” IEEE Transactions On Communications, vol. 59, no. 1, pp. 194–200, 2011.
[28] W. Chu, C. J. Colbourn, and V. R. Syrotiuk, “Slot synchronized topology-transparent scheduling for sensor networks,” Computer Communications, vol. 29, no. 4, pp. 421–428, 2006.
[29] P.Prucnal, M.Santoro, and T.Fan, “Spread spectrum fiber-optic local area network using optical processing,” Journal of lightwave technology, vol.4, no.5, pp.547–554, 1986.
[30] J.Singer, “A theorem in finite projective geometry and some applications to number theory,” Transactions of the American Mathematical Society, vol.43, no.3, pp.377– 385, 1938.
[31] T.-Y. Wu, W. Liao, C.-S. Chang, and C.-F. Shih, “Cach: Cycle-adjustable channel hopping for control channel establishment in cognitive radio networks,” in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 2706–2714.
[32] C.-S. Chang, W. Liao, and C.-M. Lien, “On the multichannel rendezvous problem: fundamental limits, optimal hopping sequences, and bounded time-to-rendezvous,” Mathematics of Operations Research, vol. 40, no. 1, pp. 1–23, 2014.
[33] C.-S. Chang, W. Liao, T.-Y. Wu, C.-S. Chang, W. Liao, and T.-Y. Wu, “Tight lower bounds for channel hopping schemes in cognitive radio networks,” IEEE/ACM Transactions on Networking (TON), vol. 24, no. 4, pp. 2343–2356, 2016.
[34] L.Kleinrock and F.Tobagi, “Packet switching in radio channels: Parti–carrier sense multiple-access modes and their throughput-delay characteristics,” IEEE transactions on Communications, vol. 23, no. 12, pp. 1400–1416, 1975.
[35] J. F. Kurose, Computer networking: A top-down approach featuring the internet, 3/E. Pearson Education India, 2005.
[36] A. Al-Dulaimi, S. Al-Rubaye, Q. Ni, and E. Sousa, “5g communications race: Pursuit of more capacity triggers lte in unlicensed band,” IEEE vehicular technology magazine, vol. 10, no. 1, pp. 43–51, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔