跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亮宇
研究生(外文):CHEN, LIANG-YU
論文名稱:以碘化亞銅鈍化鈣鈦礦太陽能電池之製程及特性研究
論文名稱(外文):Study on the Process and Characteristics of Passivation of Perovskite Solar Cells with Cupper Iodide
指導教授:傅耀賢傅耀賢引用關係
指導教授(外文):FU, YAW-SHYAN
口試委員:方得華郭宗枋李介仁
口試委員(外文):FANG, TE-HUAGUO, TZUNG-FANGLI, JIE-REN
口試日期:2018-08-01
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:碘化亞銅硫氰化鉀鈣鈦礦太陽能電池
外文關鍵詞:potassium thiocyanatecupper iodideperovskite solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究在鈣鈦礦前驅液中分別添加鹽類:硫氰化鉀與碘化亞銅,並發現添加硫氰化鉀的鈣鈦礦薄膜覆蓋率下降,並推測為該鹽類於大氣環境中易潮解,添加時則無法避免地帶入水分造成薄膜破損;而我們也發現鈣鈦礦薄膜在添加適量碘化亞銅後,鈣鈦礦薄膜晶粒大小具有顯著的成長,製作成光電元件後轉換效率也從10.7%提高至13.2%,推測原因為添加的碘化亞銅析出於鈣鈦礦的晶界,進而鈍化薄膜中的陷阱態,進而提高元件的填充因子及開路電壓。
In this study, we added potassium thiocyanate and cupper iodide into perovskite precursors. We found that the coverage of perovskite film with potassium thiocyanate decreased. It is speculated that the salt is deliquescent in the atmosphere, and it is unavoidable that the salt will lead to moisture damage when added to perovskite precursors.
A remarkable growth in the grain size has been found in the perovskite film with doping appropriate amount of cupper iodide. At the optimum concentrations of cupper iodide as additives, the perovskite solar cells show the efficiencies of 13.2%, being much higher than 10.7% of the reference cells without additives. It is speculated that the copper iodide precipitates out in the perovskite grain boundary, passivating the trap states in the thin film, which in turn increases the fill factor and open circuit voltage of the element.

中文摘要 i
Abstract ii
目次 iii
圖次 vi
表次 ix
第一章 緒論 1
1-1 研究背景 1
1-2 太陽能電池介紹 2
1-3 研究動機 4
第二章 文獻回顧 7
2-1 鈣鈦礦簡介 7
2-2 鈣鈦礦太陽能電池發展 8
2-3 鈣鈦礦太陽能電池的鈍化工程 13
2-3-1 使用碘化鉛鈍化鈣鈦礦晶界 14
2-3-2 使用甲基碘化胺鈍化鈣鈦礦晶界 16
2-3-3 使用鋁離子鈍化鈣鈦礦晶界 18
2-3-4 使用銅離子鈍化鈣鈦礦晶界 19
2-3-5 使用鈉離子鈍化鈣鈦礦晶界 20
2-3-6 使用鉀離子鈍化鈣鈦礦晶界 22
2-4 鈣鈦礦太陽能電池的離子組成工程 24
2-4-1 使用銫取代部分鈣鈦礦一價陽離子 26
2-4-2 使用銣取代部分鈣鈦礦一價陽離子 28
2-4-3 使用一價陽離子取代部分鈣鈦礦金屬陽離子 30
2-4-4 使用硫氰酸根取代鈣鈦礦鹵素 31
-4-5 使用硫氰酸鉀取代鈣鈦礦陽離子與鹵素 33
2-5 於鈣鈦礦中添加鹽類的文獻總覽 34
第三章 實驗步驟 39
3-1 實驗藥品及儀器 39
3-2 實驗架構 41
3-3 實驗方法 42
3-3-1 氧化銦錫導電玻璃製備與蝕刻 42
3-3-2 清洗導電玻璃基板 44
3-3-3 沉積電洞傳輸層 44
3-3-4 合成甲基碘化胺 45
3-3-5 鈣鈦礦層旋塗成膜 45
3-3-6 光伏元件製作 48
3-4 分析儀器與方法 49
3-4-1 X光繞射儀 (X-Ray Dffraction) 49
3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscope) 50
3-4-3 紫外/可見光光譜儀(Ultraviolet-Visible spectrophotometer) 51
3-4-4 光致發光光譜儀(Photoluminescence spectrometer) 52
3-4-5 光伏特性測量系統 53
第四章 結果與討論 54
4-1 以SEM觀察鈣鈦礦薄膜表面 54
4-1-1 添加硫氰化鉀之鈣鈦礦薄膜表面觀察 54
4-1-2添加碘化亞銅之鈣鈦礦薄膜表面觀察 56
4-2 以XRD觀察鈣鈦礦結晶狀態 58
4-2-1 添加硫氰酸鉀之鈣鈦礦結晶狀態 58
4-2-2 添加碘化亞銅之鈣鈦礦結晶狀態 60
4-3 鈣鈦礦元件電性分析 61
4-3-1 添加硫氰酸鉀之鈣鈦礦元件電性分析 61
4-3-2 添加碘化亞銅之鈣鈦礦元件電性分析 63
4-4 碘化亞銅摻雜對鈣鈦礦的影響 65
4-4-1 亞銅離子鑲入鈣鈦礦晶格中之假設 66
4-4-2 碘化亞銅析出於薄膜中之探討 69
第五章 結論 74
第六章 參考文獻 76


1.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
2.Photovoltaics, N. C. f. Best research cell efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
3.Magazine, S. Breakthrough of the Year 2013. https://www.youtube.com/watch?time_continue=114&v=9X-Cl9CMVzg.
4.Van Noorden, R.; Tollefson, J.; Check Hayden, E.; Morello, L.; Shen, H.; Butler, D.; Ledford, H.; Witze, A.; Samuel Reich, E.; Schiermeier, Q., 365 days: 2013 in review. Nature News 2013, 504 (7480), 344.
5.Cann, O. These are the top 10 emerging technologies of 2016, World Economic Forum, 2016.
https://www. weforum. org/agenda/2016/06/top-10-emergingtechnologies-2016.
6.Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014, 13 (9), 897.
7.Zhang, Z.; Zhou, Y.; Cai, Y.; Liu, H.; Qin, Q.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. M., Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process. Journal of Power Sources 2018, 377, 52-58.
8.Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. Journal of the American Chemical Society 2017, 139 (22), 7504-7512.
9.Mohamed, S. A.; Gasiorowski, J.; Hingerl, K.; Zahn, D. R.; Scharber, M. C.; Obayya, S. S.; El-Mansy, M. K.; Sariciftci, N. S.; Egbe, D. A.; Stadler, P., CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV. Solar Energy Materials and Solar Cells 2015, 143, 369-374.
10.Luo, S.; Daoud, W. A., Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A 2015, 3 (17), 8992-9010.
11.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2012, 2, 591.
12.Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials 2014, 26 (10), 1584-1589.
13.Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-344.
14.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 1228604.
15.Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Advanced Materials 2013, 25 (27), 3727-3732.
16.McNaught, A. D.; Wilkinson A., Compendium of chemical terminology. Blackwell Science Oxford 1997.
17.Zhao, P.; Kim, B. J.; Jung, H. S., Passivation in perovskite solar cells: A review. Materials Today Energy 2018.
18.Cho, A. N.; Park, N. G., Impact of interfacial layers in perovskite solar cells. ChemSusChem 2017, 10 (19), 3687-3704.
19.Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T., Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Applied Physics Letters 2013, 103 (18), 183906.
20.Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C., Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. Journal of the American Chemical Society 2014, 136 (35), 12205-12208.
21.Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters 2014, 14 (7), 4158-4163.
22.Jacobsson, T. J.; Correa-Baena, J. P.; Halvani Anaraki, E.; Philippe, B.; Stranks, S. D.; Bouduban, M. E.; Tress, W.; Schenk, K.; Teuscher, J. l.; Moser, J. E., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. Journal of the American Chemical Society 2016, 138 (32), 10331-10343.
23.Liu, F.; Dong, Q.; Wong, M. K.; Djurišić, A. B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W. K.; Wang, J., Is excess PbI2 beneficial for perovskite solar cell performance? Advanced Energy Materials 2016, 6 (7).
24.Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2013, 136 (2), 622-625.
25.Tosun, B. S.; Hillhouse, H. W., Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-equilibrated re-growth (VERG). The Journal of Physical Chemistry Letters 2015, 6 (13), 2503-2508.
26.Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy 2016, 1 (7), 16081.
27.Hawash, Z.; Raga, S. R.; Son, D. Y.; Ono, L. K.; Park, N. G.; Qi, Y., Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility. The Journal of Physical Chemistry Letters 2017, 8 (17), 3947-3953.
28.Wang, J. T. W.; Wang, Z.; Pathak, S.; Zhang, W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P. K.; Patel, J. B.; Yusof, H. A. M.; Vaynzof, Y., Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science 2016, 9 (9), 2892-2901.
29.Ye, S.; Rao, H.; Yan, W.; Li, Y.; Sun, W.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C., A strategy to simplify the preparation process of perovskite solar cells by co‐deposition of a hole‐conductor and a perovskite layer. Advanced Materials 2016, 28 (43), 9648-9654.
30.Bag, S.; Durstock, M. F., Large perovskite grain growth in low-temperature solution-processed planar pin solar cells by sodium addition. ACS Applied Materials & Interfaces 2016, 8 (8), 5053-5057.
31.Wang, L.; Moghe, D.; Hafezian, S.; Chen, P.; Young, M.; Elinski, M.; Martinu, L.; Kéna-Cohen, S. p.; Lunt, R. R., Alkali metal halide salts as interface additives to fabricate hysteresis-free hybrid perovskite-based photovoltaic devices. ACS Applied Materials & Interfaces 2016, 8 (35), 23086-23094.
32.Bi, C.; Zheng, X.; Chen, B.; Wei, H.; Huang, J., Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Letters 2017, 2 (6), 1400-1406.
33.Boopathi, K. M.; Mohan, R.; Huang, T. Y.; Budiawan, W.; Lin, M. Y.; Lee, C. H.; Ho, K. C.; Chu, C. W., Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A 2016, 4 (5), 1591-1597.
34.Zhao, P.; Yin, W.; Kim, M.; Han, M.; Song, Y. J.; Ahn, T. K.; Jung, H. S., Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. Journal of Materials Chemistry A 2017, 5 (17), 7905-7911.
35.Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555 (7697), 497.
36.Chang, Y.; Park, C.; Matsuishi, K., First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X= Cl, Br, I). Journal-Korean Physical Society 2004, 44, 889-893.
37.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 134.
38.Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476.
39.Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., CH3NH3SnxPb(1–x)I3 Perovskite solar cells covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011.
40.Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters 2013, 13 (4), 1764-1769.
41.Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913.
42.Xu, Y.; Zhu, L.; Shi, J.; Lv, S.; Xu, X.; Xiao, J.; Dong, J.; Wu, H.; Luo, Y.; Li, D., Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method. ACS Applied Materials & Interfaces 2015, 7 (4), 2242-2248.
43.Choi, H.; Jeong, J.; Kim, H. B.; Kim, S.; Walker, B.; Kim, G. H.; Kim, J. Y., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80-85.
44.Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G., Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell. Advanced Energy Materials 2015, 5 (20), 1501310.
45.Mulmudi, H. K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y. O.; Nguyen, H. T.; Macdonald, D.; Peng, J.; Lockrey, M.; Li, W., Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330-340.
46.Brgoch, J.; Lehner, A. J.; Chabinyc, M.; Seshadri, R., Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. The Journal of Physical Chemistry C 2014, 118 (48), 27721-27727.
47.Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209.
48.Abdi-Jalebi, M.; Dar, M. I.; Sadhanala, A.; Senanayak, S. P.; Grätzel, M.; Friend, R. H., Monovalent cation doping of CH3NH3PbI3 for efficient perovskite solar cells. Journal of Visualized Experiments 2017, 121, 55307.
49.Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T., Pseudohalide‐induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angewandte Chemie 2015, 127 (26), 7727-7730.
50.Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L.; Yan, F., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications 2016, 7, 11105.
51.Wang, C.; Zhao, D.; Yu, Y.; Shrestha, N.; Grice, C. R.; Liao, W.; Cimaroli, A. J.; Chen, J.; Ellingson, R. J.; Zhao, X., Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy 2017, 35, 223-232.
52.Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
53.劉光啟, 化學化工物性數據手冊:無機卷. 化學工業出版社: 中國, 2013.
54.勞動部職業安全衛生署, 安全資料表:碘化銅(I). https://ghs.osha.gov.tw/cht/intro/MSDS.aspx?casno=7681-65-4.
55.Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316.
56.Lin, P. Y.; Wu, T.; Ahmadi, M.; Liu, L.; Haacke, S.; Guo, T. F.; Hu, B., Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 2017, 36, 95-101.
57.Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
58.Kuku, T. A.; Salau, A. M., Electrical conductivity of CuSnI3, CuPbI3 and KPbI3. Solid State Ionics 1987, 25 (1), 1-7.
59.Kuku, T., Ionic transport and galvanic cell discharge characteristics of CuPbI3 thin films. Thin Solid Films 1998, 325 (1-2), 246-250.
60.Li, J.; Qin, Y.; Jin, C.; Li, Y.; Shi, D.; Schmidt-Mende, L.; Gan, L.; Yang, J., Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands. Nanoscale 2013, 5 (11), 5009-5016.
61.Kang, H.; Liu, R.; Chen, K.; Zheng, Y.; Xu, Z., Electrodeposition and optical properties of highly oriented γ-CuI thin films. Electrochimica Acta 2010, 55 (27), 8121-8125.
62.Feng, S.; Yang, Y.; Li, M.; Wang, J.; Cheng, Z.; Li, J.; Ji, G.; Yin, G.; Song, F.; Wang, Z., High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Applied Materials & Interfaces 2016, 8 (23), 14503-14512.
63.Wei, H.; Tang, Y.; Feng, B.; You, H., Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chinese Physics B 2017, 26 (12), 128801.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top