|
1.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. 2.Photovoltaics, N. C. f. Best research cell efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart.png. 3.Magazine, S. Breakthrough of the Year 2013. https://www.youtube.com/watch?time_continue=114&v=9X-Cl9CMVzg. 4.Van Noorden, R.; Tollefson, J.; Check Hayden, E.; Morello, L.; Shen, H.; Butler, D.; Ledford, H.; Witze, A.; Samuel Reich, E.; Schiermeier, Q., 365 days: 2013 in review. Nature News 2013, 504 (7480), 344. 5.Cann, O. These are the top 10 emerging technologies of 2016, World Economic Forum, 2016. https://www. weforum. org/agenda/2016/06/top-10-emergingtechnologies-2016. 6.Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014, 13 (9), 897. 7.Zhang, Z.; Zhou, Y.; Cai, Y.; Liu, H.; Qin, Q.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. M., Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process. Journal of Power Sources 2018, 377, 52-58. 8.Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. Journal of the American Chemical Society 2017, 139 (22), 7504-7512. 9.Mohamed, S. A.; Gasiorowski, J.; Hingerl, K.; Zahn, D. R.; Scharber, M. C.; Obayya, S. S.; El-Mansy, M. K.; Sariciftci, N. S.; Egbe, D. A.; Stadler, P., CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV. Solar Energy Materials and Solar Cells 2015, 143, 369-374. 10.Luo, S.; Daoud, W. A., Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A 2015, 3 (17), 8992-9010. 11.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2012, 2, 591. 12.Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials 2014, 26 (10), 1584-1589. 13.Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-344. 14.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 1228604. 15.Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Advanced Materials 2013, 25 (27), 3727-3732. 16.McNaught, A. D.; Wilkinson A., Compendium of chemical terminology. Blackwell Science Oxford 1997. 17.Zhao, P.; Kim, B. J.; Jung, H. S., Passivation in perovskite solar cells: A review. Materials Today Energy 2018. 18.Cho, A. N.; Park, N. G., Impact of interfacial layers in perovskite solar cells. ChemSusChem 2017, 10 (19), 3687-3704. 19.Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T., Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Applied Physics Letters 2013, 103 (18), 183906. 20.Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C., Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. Journal of the American Chemical Society 2014, 136 (35), 12205-12208. 21.Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters 2014, 14 (7), 4158-4163. 22.Jacobsson, T. J.; Correa-Baena, J. P.; Halvani Anaraki, E.; Philippe, B.; Stranks, S. D.; Bouduban, M. E.; Tress, W.; Schenk, K.; Teuscher, J. l.; Moser, J. E., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. Journal of the American Chemical Society 2016, 138 (32), 10331-10343. 23.Liu, F.; Dong, Q.; Wong, M. K.; Djurišić, A. B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W. K.; Wang, J., Is excess PbI2 beneficial for perovskite solar cell performance? Advanced Energy Materials 2016, 6 (7). 24.Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2013, 136 (2), 622-625. 25.Tosun, B. S.; Hillhouse, H. W., Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-equilibrated re-growth (VERG). The Journal of Physical Chemistry Letters 2015, 6 (13), 2503-2508. 26.Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy 2016, 1 (7), 16081. 27.Hawash, Z.; Raga, S. R.; Son, D. Y.; Ono, L. K.; Park, N. G.; Qi, Y., Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility. The Journal of Physical Chemistry Letters 2017, 8 (17), 3947-3953. 28.Wang, J. T. W.; Wang, Z.; Pathak, S.; Zhang, W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P. K.; Patel, J. B.; Yusof, H. A. M.; Vaynzof, Y., Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science 2016, 9 (9), 2892-2901. 29.Ye, S.; Rao, H.; Yan, W.; Li, Y.; Sun, W.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C., A strategy to simplify the preparation process of perovskite solar cells by co‐deposition of a hole‐conductor and a perovskite layer. Advanced Materials 2016, 28 (43), 9648-9654. 30.Bag, S.; Durstock, M. F., Large perovskite grain growth in low-temperature solution-processed planar pin solar cells by sodium addition. ACS Applied Materials & Interfaces 2016, 8 (8), 5053-5057. 31.Wang, L.; Moghe, D.; Hafezian, S.; Chen, P.; Young, M.; Elinski, M.; Martinu, L.; Kéna-Cohen, S. p.; Lunt, R. R., Alkali metal halide salts as interface additives to fabricate hysteresis-free hybrid perovskite-based photovoltaic devices. ACS Applied Materials & Interfaces 2016, 8 (35), 23086-23094. 32.Bi, C.; Zheng, X.; Chen, B.; Wei, H.; Huang, J., Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Letters 2017, 2 (6), 1400-1406. 33.Boopathi, K. M.; Mohan, R.; Huang, T. Y.; Budiawan, W.; Lin, M. Y.; Lee, C. H.; Ho, K. C.; Chu, C. W., Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A 2016, 4 (5), 1591-1597. 34.Zhao, P.; Yin, W.; Kim, M.; Han, M.; Song, Y. J.; Ahn, T. K.; Jung, H. S., Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. Journal of Materials Chemistry A 2017, 5 (17), 7905-7911. 35.Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555 (7697), 497. 36.Chang, Y.; Park, C.; Matsuishi, K., First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X= Cl, Br, I). Journal-Korean Physical Society 2004, 44, 889-893. 37.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 134. 38.Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476. 39.Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., CH3NH3SnxPb(1–x)I3 Perovskite solar cells covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011. 40.Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters 2013, 13 (4), 1764-1769. 41.Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913. 42.Xu, Y.; Zhu, L.; Shi, J.; Lv, S.; Xu, X.; Xiao, J.; Dong, J.; Wu, H.; Luo, Y.; Li, D., Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method. ACS Applied Materials & Interfaces 2015, 7 (4), 2242-2248. 43.Choi, H.; Jeong, J.; Kim, H. B.; Kim, S.; Walker, B.; Kim, G. H.; Kim, J. Y., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80-85. 44.Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G., Formamidinium and cesium hybridization for photo‐and moisture‐stable perovskite solar cell. Advanced Energy Materials 2015, 5 (20), 1501310. 45.Mulmudi, H. K.; Shen, H.; Wu, Y.; Barugkin, C.; Mayon, Y. O.; Nguyen, H. T.; Macdonald, D.; Peng, J.; Lockrey, M.; Li, W., Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy 2016, 30, 330-340. 46.Brgoch, J.; Lehner, A. J.; Chabinyc, M.; Seshadri, R., Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. The Journal of Physical Chemistry C 2014, 118 (48), 27721-27727. 47.Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209. 48.Abdi-Jalebi, M.; Dar, M. I.; Sadhanala, A.; Senanayak, S. P.; Grätzel, M.; Friend, R. H., Monovalent cation doping of CH3NH3PbI3 for efficient perovskite solar cells. Journal of Visualized Experiments 2017, 121, 55307. 49.Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T., Pseudohalide‐induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angewandte Chemie 2015, 127 (26), 7727-7730. 50.Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L.; Yan, F., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications 2016, 7, 11105. 51.Wang, C.; Zhao, D.; Yu, Y.; Shrestha, N.; Grice, C. R.; Liao, W.; Cimaroli, A. J.; Chen, J.; Ellingson, R. J.; Zhao, X., Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy 2017, 35, 223-232. 52.Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093. 53.劉光啟, 化學化工物性數據手冊:無機卷. 化學工業出版社: 中國, 2013. 54.勞動部職業安全衛生署, 安全資料表:碘化銅(I). https://ghs.osha.gov.tw/cht/intro/MSDS.aspx?casno=7681-65-4. 55.Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316. 56.Lin, P. Y.; Wu, T.; Ahmadi, M.; Liu, L.; Haacke, S.; Guo, T. F.; Hu, B., Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 2017, 36, 95-101. 57.Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry 2013, 52 (15), 9019-9038. 58.Kuku, T. A.; Salau, A. M., Electrical conductivity of CuSnI3, CuPbI3 and KPbI3. Solid State Ionics 1987, 25 (1), 1-7. 59.Kuku, T., Ionic transport and galvanic cell discharge characteristics of CuPbI3 thin films. Thin Solid Films 1998, 325 (1-2), 246-250. 60.Li, J.; Qin, Y.; Jin, C.; Li, Y.; Shi, D.; Schmidt-Mende, L.; Gan, L.; Yang, J., Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands. Nanoscale 2013, 5 (11), 5009-5016. 61.Kang, H.; Liu, R.; Chen, K.; Zheng, Y.; Xu, Z., Electrodeposition and optical properties of highly oriented γ-CuI thin films. Electrochimica Acta 2010, 55 (27), 8121-8125. 62.Feng, S.; Yang, Y.; Li, M.; Wang, J.; Cheng, Z.; Li, J.; Ji, G.; Yin, G.; Song, F.; Wang, Z., High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Applied Materials & Interfaces 2016, 8 (23), 14503-14512. 63.Wei, H.; Tang, Y.; Feng, B.; You, H., Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chinese Physics B 2017, 26 (12), 128801.
|