跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許良偉
研究生(外文):Hsu, Liang-Wei
論文名稱:釓摻雜氧化鋅奈米線之溶液合成技術與光催應用
論文名稱(外文):Solution Synthesis Technology and Photocatalytic Application of Gadolinium Doped Zinc Oxide Nanowires
指導教授:許正良許正良引用關係
指導教授(外文):Hsu, Cheng-Liang
口試委員:張守進邱裕中
口試委員(外文):Chang, Shoou-JinnChiou, Yu-Zung
口試日期:2018-07-21
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:溶膠-凝膠AZO氧化鋅光觸媒釓摻雜
外文關鍵詞:sol-gelAZOzinc oxidephotocatalystGd doping
相關次數:
  • 被引用被引用:3
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
釓摻雜氧化鋅奈米線之溶液合成技術與光催化應用

學生:許良偉 指導教授:許正良
國立臺南大學電機工程學系碩士班

中文摘要
本研究以異丙醇作為溶劑,利用溶膠-凝膠(sol-gel)法塗布在玻璃基板上,製備氧化鋅摻雜鋁的薄膜層(ZnO、AZO),再使用水熱法成長釓摻雜氧化鋅奈米線(ZnO:Gd NWs),最後滴金於釓摻雜氧化鋅奈米(Au-ZnO:Gd NWs)形成光觸媒在水溶液中光催化分解亞甲基藍(Methylene Blue, MB)。並使用SEM、EDS、SAED、XRD、PL、Hall、UV-Vis,進行各種的晶體結構分析。
在SEM中,可觀察到ZnO及AZO晶種層,第一層的平均厚度為81.65nm,第二層的平均厚度為141.4nm,第三層的平均厚度為220.4nm,成功的將薄膜成長在玻璃基板上。 奈米線方面Pure ZnO NWs/AZO與3mM摻雜釓 ZnO NWs/AZO長度及直徑分別為約1.74μ左右/約130nm和約1.672μm/約132.6nm,則從EDS分析中可發現3mM釓摻雜濃度為0.5%,並從XRD分析中可得知成長純ZnO薄膜層與1%Al摻雜ZnO薄膜層具有垂直於基板表面之c軸優先取向的六方纖鋅礦結構。
在光催化量測部分我們在室溫下,使用3瓦的UV-365nm LED燈照射下,對不同參數之釓摻雜ZnO奈米線上進行亞甲基藍(Methylene Blue, MB)的光降解。接著包覆鋁鉑紙實驗發現能增快光催化效率,最後利用滴金於試片表面有助於光觸媒進行催化反應。

關鍵字:溶膠-凝膠,AZO,氧化鋅,光觸媒,釓摻雜


Solution Synthesis Technology and Photocatalytic Application of Gadolinium Doped Zinc Oxide Nanowires

Student:Liang-wei Hsu Advisor:Cheng-Liang Hsu
Department of Electrical Engineering
National University of Tainan

Abstract
In this study, isopropyl alcohol was used as a solvent, and a sol-gel method was applied to a glass substrate to prepare a zinc oxide-doped aluminum film layer (ZnO, AZO), and then hydrothermally grown yttrium doping. Zinc oxide nanowires (ZnO: Gd NWs), and finally gold-doped yttrium-doped zinc oxide nano-particles (Au-ZnO: Gd NWs) to form photocatalysts for photocatalytic decomposition of methylene blue (MB) in aqueous solution. Various crystal structure analyses were carried out using SEM, EDS, SAED, XRD, PL, Hall, and UV-Vis..
In the photocatalytic measurement section, photo-degradation of methylene blue (MB) was carried out on Gd-doped ZnO nanowires with different parameters at room temperature using a 3 Watt UV-365 nm LED lamp. Then, it was found that the coated aluminum-platinum paper could increase the photocatalytic efficiency. Finally, the use of gold drop on the surface of the test piece facilitated the catalytic reaction of the photocatalyst.


Keywords: sol-gel, AZO, zinc oxide, photocatalyst, Gd doping


目次
中文摘要…………………………………………….……………………………..……. VIII
Abstract.………………………………………………………………...……….……...... IX
目次……………………………………………………………………………….………XII
表目次…………………………………………………………………………….…….. XIII
圖目次………………………………………………………………………………….…XIV
第一章、序論……………………………………………………………………….………...1
1.1前言………………………………………………………………………………………..1
1.2亞甲基藍……………………………………………………………………………….….2
1.3研究目的……………………………………………………………………………….….3
第二章、文獻回顧……………………………………………………………………………4
2.1光觸媒之發展與應用………………………………...……………………………………4
2.2光催化反應機制……………………………………………………………………………5
2.3二氧化鈦(TiO2)之簡介………………………………………………………………….5
2.4氧化鋅之簡介………..……..…………………………………………………..….……….7
2.4.1氧化鋅製備…………………………………………………….………………..………..8
2.4.1.1溶膠-凝膠法(sol-gel method)………………………………………………………….8
2.4.1.2旋塗法(spin coating)…………………………………………………………………..9
2.4.1.3水熱法(Hydrothermal method)………………………………..…………….………11
2.4.2氧化鋅之發光機制……………………………………………...………………………12
2.4.3氧化鋅之光催化反應原理………………………………………………………...……14
2.4.4氧化鋅之摻雜光催化改善…………………………………………………….......……15
第三章、實驗步驟與方法…………………………………………………………...………17
3.1實驗流程與架構….………………………………………………………..……….……..17
3.2化學藥品…………………………………………………………………..…………....…18
3.2.1溶膠-凝膠(Sol-gel)法製備氧化鋅薄膜之材料…………………………...……………18
3.2.2水熱法製備氧化鋅奈米線之材料…………………………………………….……….18
3.3製程方法……..…………………………………………………………………..…….…19
3.3.1溶膠-凝膠(Sol-gel)法製備鋁摻雜氧化鋅(AZO)薄膜………………………..……….19
3.3.1.1旋轉塗佈薄膜………………………………………………………………..……….21
3.3.2四氮六甲環 (HMTA)輔助水熱法之合成機制……………….....................................22
3.3.3水熱法成長氧化鋅與釓摻雜氧化鋅奈米線……………………………….....….……23
3.3.4滴金於ZnO奈米線表面………………..………………………………….…..……….24
第四章、儀器介紹………………………………………………………………...…..…….26
4.1分析儀器………………………………………………………………………...….…….26
4.1.1掃描式電子顯微鏡 (Scanning electrons microscope, SEM)………………….…….26
4.1.2能量散佈分析儀 (EDS)…………………………….……………………….…............27
4.1.3X光繞射分析儀 (XRD)…………………………………………………….….………28
4.1.4微光激發光譜儀 (Micro-PL Spectrometer)……,……………………………………29
4.2量測儀器………………….…………………………………………………..…………..30
4.2.1 Keithley-4200………………………………………………………….……………….30
4.2.2 Keithley-237……………………………………………………………………………30
4.2.3智慧型CCD分光光譜儀…………………………………………….………………..31
第五章、結果與討論……………………………………………………………….………..32
5.1 ZnO和AZO薄膜之SEM分析…...…………………….………….....................………..32
5.2氧化鋅奈米線之SEM分析…………..…………………………………………………..37
5.3釓摻雜氧化鋅奈米線之SEM分析…..……………………………………….………….38
5.4金複合於釓摻雜氧化鋅之TEM分析……………………………………………………43
5.5 ZnO和AZO薄膜之XRD分析……………………..…………………………………45
5.6釓摻雜氧化鋅奈米線之XRD分析………………………………………….………….48
5.7 ZnO和AZO薄膜之PL分析…………………………………………………………..50
5.8釓摻雜氧化鋅奈米線之PL分析……………………………………………………….51
5.9釓摻雜氧化鋅奈米線之霍爾效應(Hall Effect)分析…………………………...………54
5.10氧化鋅奈米線光學特性分析…………………………………………………………55
5.11薄膜光電量測結果………………………………………………………….………….58
5.11.1 ZnO、AZO薄膜之光暗電流量測…………………………………….…………….58
5.11.2滴金與釓摻雜氧化鋅奈米線之光暗電流量測……………………..…..……………60
5.12光催化實驗………………………………………………………………….…………..61
5.12.1比爾定律(Beer's law)………………………………………………….…………..61
5.12.2實驗的選擇與製備……………………………………………………………………62
5.13亞甲基藍之紫外光光催化降解實驗…………………………………….……………..63
5.14光降解亞甲基藍反應……………………………………………………….…………..64
5.15改善光降解亞甲基藍反應……………………………………………………………..65
第六章、結果與為來展望……………………………………………………….…………..71
6.1結論………………………………………………………………………….……………71
6.2未來展望…………………………………………………………….……………………72
參考文獻…………………………………………………………….………………….…….73

[1]葉名倉. (2008). 催化反應(catalysis reaction). Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=4732
[2]林麗瓊. (2014). 在凝態中心築夢踏實我的科研生涯—以光觸媒還原二氧化碳為例. Available: file:///C:/Users/NUTN/Downloads/134.pdf
[3]維基百科. (2018). 亞甲藍. Available: https://zh.wikipedia.org/wiki/%E4%BA%9E%E7%94%B2%E8%97%8D
[4]X. Yong-hui, G. Qiang, W. Yang-yi, and L. Meng-juan, "Preparation and Photocatalytic Activity of AZO Hollow Nanofibers," Journal of Materials Engineering, vol. 46, no. 2, pp. 16-21, 2018.
[5]威利事業有限公司. (2014). 光淨化 空氣安全專家. Available: https://sites.google.com/site/a0922182856/shen-me-shi-guang-chu-mei-tio2
[6]B.-c. Guo, "Application of Sputtering Technology on Preparing Nano-sized Composite," 2010.
[7]M. N. Chong, B. Jin, C. W. Chow, and C. Saint, "Recent developments in photocatalytic water treatment technology: a review," Water research, vol. 44, no. 10, pp. 2997-3027, 2010.
[8]Y. Tang, H. Ren, and J. Huang, "Synthesis of porous TiO 2 nanowires and their photocatalytic properties," Frontiers of Optoelectronics, vol. 10, no. 4, pp. 395-401, 2017.
[9]X. Zhao, F. Lou, M. Li, X. Lou, Z. Li, and J. Zhou, "Sol− gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications," Ceramics International, vol. 40, no. 4, pp. 5507-5514, 2014.
[10]H. J. Jung, R. Koutavarapu, S. Lee, J. H. Kim, H. C. Choi, and M. Y. Choi, "Enhanced photocatalytic activity of Au-doped Au@ ZnO core-shell flower-like nanocomposites," Journal of Alloys and Compounds, vol. 735, pp. 2058-2066, 2018.
[11]Y. Jin et al., "P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD," Applied Surface Science, vol. 376, pp. 236-240, 2016.
[12]B. Li, Q. Liu, Y. Zhang, Z. Liu, and L. Geng, "Highly conductive Nb doped BaSnO3 thin films on MgO substrates by pulsed laser deposition," Journal of Alloys and Compounds, vol. 680, pp. 343-349, 2016.
[13]A. Karimi, D. La Grange, N. Goebbels, and A. Santana, "Structural and mechanical properties of Nb 1− x Ti x N thin films deposited by rf magnetron sputtering," Thin Solid Films, vol. 607, pp. 14-24, 2016.
[14]J. Bian et al., "Thickness-modulated metal–insulator transition of VO 2 film grown on sapphire substrate by MBE," Journal of materials science, vol. 51, no. 13, pp. 6149-6155, 2016.
[15]李映萱 and 陳登銘, "微米級鍺酸鹽與奈米級鎵酸鹽螢光體之製備與發光特性之研究," 2003.
[16]D. Bornside, C. Macosko, and L. Scriven, "MODELING OF SPIN COATING," Journal of imaging technology, vol. 13, no. 4, pp. 122-130, 1987.
[17]H. Karaagac, E. Yengel, and M. S. Islam, "Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method," Journal of Alloys and Compounds, vol. 521, pp. 155-162, 2012.
[18]J. Li, J. Xu, Q. Xu, and G. Fang, "Preparation and characterization of Al doped ZnO thin films by sol–gel process," Journal of Alloys and Compounds, vol. 542, pp. 151-156, 2012.
[19]L. Duan, X. Zhao, Y. Zhang, H. Shen, and R. Liu, "Fabrication of flexible Al-doped ZnO films via sol–gel method," Materials Letters, vol. 162, pp. 199-202, 2016.
[20]S.-J. Young and Y.-H. Liu, "High response of ultraviolet photodetector based on al-doped ZnO nanosheet structures," IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 5, pp. 1-5, 2017.
[21]G. H. Jo, S.-H. Kim, and J.-H. Koh, "Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films," Ceramics International, vol. 44, no. 1, pp. 735-741, 2018.
[22]趙偉迪, "氧化鋅奈米線應用於發光二極體之研製," 臺灣師範大學機電科技研究所學位論文, pp. 1-204, 2009.
[23]高義典, "以 Hotwire 系統輔助 LPCVD 法製程鈦/銅摻雜氧化鋅奈米柱之研究," 2013.
[24]K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, and B. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, no. 10, pp. 7983-7990, 1996.
[25]B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied physics letters, vol. 79, no. 7, pp. 943-945, 2001.
[26]Y. Chen, L. Wang, W. Wang, and M. Cao, "Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties," Materials Chemistry and Physics, vol. 199, pp. 416-423, 2017.
[27]X. Yi et al., "Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films," Thin Solid Films, vol. 636, pp. 339-345, 2017.
[28]Y. Luo et al., "Fabrication and photocatalytic properties of Gd-doped ZnO nanoparticle-assembled nanorods," Materials Letters, vol. 149, pp. 70-73, 2015.
[29]L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Advanced Materials, vol. 15, no. 5, pp. 464-466, 2003.
[30]X. Yan, Z. Li, R. Chen, and W. Gao, "Template growth of ZnO nanorods and microrods with controllable densities," Crystal Growth and Design, vol. 8, no. 7, pp. 2406-2410, 2008.
[31]維基百科. 釓. Available: https://zh.wikipedia.org/wiki/%E9%92%86
[32]國立成功大學微奈米中心. (2016). 儀器設備介紹.
[33]M. J. Akhtar, M. Ahamed, S. Kumar, M. M. Khan, J. Ahmad, and S. A. Alrokayan, "Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species," International journal of nanomedicine, vol. 7, p. 845, 2012.
[34]X. Hao et al., "Thickness dependence of structural, optical and electrical properties of ZnO: Al films prepared on flexible substrates," Applied Surface Science, vol. 183, no. 1-2, pp. 137-142, 2001.
[35]H. McMurdie et al., "JCPDS—International centre for diffraction data task group on cell parameter refinement," Powder Diffr, vol. 1, pp. 66-76, 1986.
[36]L. Chen, J. Li, L. Yuan, and Q. Cai, "Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films," Applied surface science, vol. 273, pp. 82-88, 2013.
[37]Y. Hu, Z. Jiang, C. Xu, T. Mei, J. Guo, and T. White, "Monodisperse ZnO nanodots: synthesis, charaterization, and optoelectronic properties," The Journal of Physical Chemistry C, vol. 111, no. 27, pp. 9757-9760, 2007.
[38]M. D. L. Ruiz Peralta, U. Pal, and R. S. Zeferino, "Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis," ACS applied materials & interfaces, vol. 4, no. 9, pp. 4807-4816, 2012.
[39]J. Liqiang et al., "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity," Solar Energy Materials and Solar Cells, vol. 90, no. 12, pp. 1773-1787, 2006.
[40]S. Wu, Z. Chen, T. Wang, and X. Ji, "A facile approach for the fabrication of Au/ZnO-hollow-sphere-monolayer thin films and their photocatalytic properties," Applied Surface Science, vol. 412, pp. 69-76, 2017.
[41]J. Wang, P. Liu, X. Fu, Z. Li, W. Han, and X. Wang, "Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes," Langmuir, vol. 25, no. 2, pp. 1218-1223, 2008.
[42]Y. Zheng et al., "Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property," Inorganic chemistry, vol. 46, no. 16, pp. 6675-6682, 2007.
[43]J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Analytical biochemistry, vol. 337, no. 2, pp. 171-194, 2005.
[44]比爾-朗伯定律. Available: https://zh.wikipedia.org/wiki/%E6%AF%94%E5%B0%94-%E6%9C%97%E4%BC%AF%E5%AE%9A%E5%BE%8B
[45]張育唐. (2011). 比爾定律與吸收度. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=40839
[46]S. Mukhopadhyay, P. P. Das, S. Maity, P. Ghosh, and P. S. Devi, "Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity," Applied Catalysis B: Environmental, vol. 165, pp. 128-138, 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊