|
Allert, N., H. Koller, and M. Siebler. 1998. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res. 782:261-270. Baldisserotto, B., J.A. Martos-Sitcha, C.C. Menezes, C. Toni, R.L. Prati, O. Garcia Lde, J. Salbego, J.M. Mancera, and G. Martinez-Rodriguez. 2014. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquat Toxicol. 152:341-352. Becker, T., M.F. Wullimann, C.G. Becker, R.R. Bernhardt, and M. Schachner. 1997. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 377:577-595. Binstock, L., and H. Lecar. 1969. Ammonium ion currents in the squid giant axon. J Gen Physiol. 53:342-361. Brignull, H.R., D.W. Raible, and J.S. Stone. 2009. Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res. 1277:12-23. Chablais, F., and A. Jazwinska. 2010. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development. 137:871-879. Ching, B., S.F. Chew, W.P. Wong, and Y.K. Ip. 2009. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat Toxicol. 95:203-212. Chitnis, A.B., D.D. Nogare, and M. Matsuda. 2012. Building the posterior lateral line system in zebrafish. Dev Neurobiol. 72:234-255. Dambly-Chaudiere, C., D. Sapede, F. Soubiran, K. Decorde, N. Gompel, and A. Ghysen. 2003. The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell. 95:579-587. Engeszer, R.E., L.B. Patterson, A.A. Rao, and D.M. Parichy. 2007. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 4:21-40. Esterberg, R., D.W. Hailey, A.B. Coffin, D.W. Raible, and E.W. Rubel. 2013. Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci. 33:7513-7525. Evans, D.H., P.M. Piermarini, and K.P. Choe. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85:97-177. Fettiplace, R. 2009. Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch. 458:1115-1123. Gale, J.E., W. Marcotti, H.J. Kennedy, C.J. Kros, and G.P. Richardson. 2001. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci. 21:7013-7025. Gemberling, M., T.J. Bailey, D.R. Hyde, and K.D. Poss. 2013. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29:611-620. Gillespie, P.G., and U. Muller. 2009. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139:33-44. Goldshmit, Y., T.E. Sztal, P.R. Jusuf, T.E. Hall, M. Nguyen-Chi, and P.D. Currie. 2012. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci. 32:7477-7492. Goodrich, L.V. 2005. Hear, hear for the zebrafish. Neuron. 45:3-5. Harris, J.A., A.G. Cheng, L.L. Cunningham, G. MacDonald, D.W. Raible, and E.W. Rubel. 2003. Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol. 4:219-234. Hernandez, P.P., V. Moreno, F.A. Olivari, and M.L. Allende. 2006. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res. 213:1-10. Howe, D.G., Y.M. Bradford, T. Conlin, A.E. Eagle, D. Fashena, K. Frazer, J. Knight, P. Mani, R. Martin, S.A. Moxon, H. Paddock, C. Pich, S. Ramachandran, B.J. Ruef, L. Ruzicka, K. Schaper, X. Shao, A. Singer, B. Sprunger, C.E. Van Slyke, and M. Westerfield. 2013a. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 41:D854-860. Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, et al. 2013b. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496:498-503. Ip, Y.K., and S.F. Chew. 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol. 1:134. Kishimoto, N., K. Shimizu, and K. Sawamoto. 2012. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 5:200-209. Kizil, C., N. Kyritsis, S. Dudczig, V. Kroehne, D. Freudenreich, J. Kaslin, and M. Brand. 2012. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell. 23:1230-1237. Kroehne, V., D. Freudenreich, S. Hans, J. Kaslin, and M. Brand. 2011. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development. 138:4831-4841. Langheinrich, U. 2003. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays. 25:904-912. Ledent, V. 2002. Postembryonic development of the posterior lateral line in zebrafish. Development. 129:597-604. Lin, L.Y., W. Pang, W.M. Chuang, G.Y. Hung, Y.H. Lin, and J.L. Horng. 2013. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol. 305:C1060-1068. Ma, E.Y., and D.W. Raible. 2009. Signaling pathways regulating zebrafish lateral line development. Curr Biol. 19:R381-386. Marcaida, G., V. Felipo, C. Hermenegildo, M.D. Minana, and S. Grisolia. 1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67-68. Marz, M., R. Schmidt, S. Rastegar, and U. Strahle. 2011. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn. 240:2221-2231. McNeil, P.L., D. Boyle, T.B. Henry, R.D. Handy, and K.A. Sloman. 2014. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol. 152:318-323. Meyers, J.R., R.B. MacDonald, A. Duggan, D. Lenzi, D.G. Standaert, J.T. Corwin, and D.P. Corey. 2003. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci. 23:4054-4065. Minana, M.D., C. Hermenegildo, M. Llsansola, C. Montoliu, S. Grisolia, and V. Felipo. 1996. Carnitine and choline derivatives containing a trimethylamine group prevent ammonia toxicity in mice and glutamate toxicity in primary cultures of neurons. J Pharmacol Exp Ther. 279:194-199. Nakada, T., K. Hoshijima, M. Esaki, S. Nagayoshi, K. Kawakami, and S. Hirose. 2007. Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol. 293:R1743-1753. Namdaran, P., K.E. Reinhart, K.N. Owens, D.W. Raible, and E.W. Rubel. 2012. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J Neurosci. 32:3516-3528. Niihori, M., T. Platto, S. Igarashi, A. Hurbon, A.M. Dunn, P. Tran, H. Tran, J.A. Mudery, M.J. Slepian, and A. Jacob. 2015. Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a high-throughput drug development platform targeting hearing loss. Transl Res. 166:440-450. Nogare, D.D., M. Nikaido, K. Somers, J. Head, T. Piotrowski, and A.B. Chitnis. 2017. In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Dev Biol. 422:14-23. Nunez, V.A., A.F. Sarrazin, N. Cubedo, M.L. Allende, C. Dambly-Chaudiere, and A. Ghysen. 2009. Postembryonic development of the posterior lateral line in the zebrafish. Evol Dev. 11:391-404. Ohmori, H. 1985. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol. 359:189-217. Olive, R., S. Wolf, A. Dubreuil, V. Bormuth, G. Debregeas, and R. Candelier. 2016. Rheotaxis of Larval Zebrafish: Behavioral Study of a Multi-Sensory Process. Front Syst Neurosci. 10:14. Olszewski, J., M. Haehnel, M. Taguchi, and J.C. Liao. 2012. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS One. 7:e36661. Oteiza, P., I. Odstrcil, G. Lauder, R. Portugues, and F. Engert. 2017. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature. 547:445-448. Poss, K.D., L.G. Wilson, and M.T. Keating. 2002. Heart regeneration in zebrafish. Science. 298:2188-2190. Raible, D.W., and G.J. Kruse. 2000. Organization of the lateral line system in embryonic zebrafish. J Comp Neurol. 421:189-198. Randall, D.J., and T.K. Tsui. 2002. Ammonia toxicity in fish. Mar Pollut Bull. 45:17-23. Raymond, P.A., L.K. Barthel, R.L. Bernardos, and J.J. Perkowski. 2006. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol. 6:36. Sanchez, M., M.L. Ceci, D. Gutierrez, C. Anguita-Salinas, and M.L. Allende. 2016. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol. 14:27. Santoriello, C., and L.I. Zon. 2012. Hooked! Modeling human disease in zebrafish. J Clin Invest. 122:2337-2343. Shih, T.H., J.L. Horng, P.P. Hwang, and L.Y. Lin. 2008. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol. 295:C1625-1632. Shih, T.H., J.L. Horng, Y.T. Lai, and L.Y. Lin. 2013. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol. 304:R1130-1138. Shingles, A., D.J. McKenzie, E.W. Taylor, A. Moretti, P.J. Butler, and S. Ceradini. 2001. Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss). J Exp Biol. 204:2691-2698. Singh, S.P., J.E. Holdway, and K.D. Poss. 2012. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell. 22:879-886. Stoick-Cooper, C.L., G. Weidinger, K.J. Riehle, C. Hubbert, M.B. Major, N. Fausto, and R.T. Moon. 2007. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 134:479-489. Suli, A., G.M. Watson, E.W. Rubel, and D.W. Raible. 2012. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One. 7:e29727. Thomas, A.J., D.W. Hailey, T.M. Stawicki, P. Wu, A.B. Coffin, E.W. Rubel, D.W. Raible, J.A. Simon, and H.C. Ou. 2013. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci. 33:4405-4414. Uribe, P.M., L.H. Kawas, J.W. Harding, and A.B. Coffin. 2015. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure. Front Cell Neurosci. 9:3. Vihtelic, T.S., J.E. Soverly, S.C. Kassen, and D.R. Hyde. 2006. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res. 82:558-575. Visek, W.J. 1984. Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J Dairy Sci. 67:481-498. Wicks, B.J., R. Joensen, Q. Tang, and D.J. Randall. 2002. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquat Toxicol. 59:55-69.
|