|
1. Shangkuan, W.C., et al., Risk analysis of colorectal cancer incidence by gene expression analysis. PeerJ, 2017. 5: p. e3003. 2. O'Connell, J.B., et al., Rates of colon and rectal cancers are increasing in young adults. The American surgeon, 2003. 69(10): p. 866. 3. Siegel, R.L., A. Jemal, and E.M. Ward, Increase in incidence of colorectal cancer among young men and women in the United States. Cancer Epidemiol Biomarkers Prev, 2009. 18(6): p. 1695-8. 4. Santarelli, R.L., F. Pierre, and D.E. Corpet, Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutrition and cancer, 2008. 60(2): p. 131-144. 5. Ferguson, L.R., Meat and cancer. Meat science, 2010. 84(2): p. 308-313. 6. Hord, N.G., Y. Tang, and N.S. Bryan, Food sources of nitrates and nitrites: the physiologic context for potential health benefits–. The American journal of clinical nutrition, 2009. 90(1): p. 1-10. 7. Kanwar, S.S., A. Poolla, and A.P. Majumdar, Regulation of colon cancer recurrence and development of therapeutic strategies. World J Gastrointest Pathophysiol, 2012. 3(1): p. 1-9. 8. Wolin, K.Y., et al., Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer, 2009. 100(4): p. 611-6. 9. Phua, L.C., et al., Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther, 2014. 15(4): p. 389-97. 10. Lin, B.R., et al., Overall Survival of Stage III Colon Cancer with Only One Lymph Node Metastasis Is Independently Predicted by Preoperative Carcinoembryonic Antigen Level and Lymph Node Sampling Status. PLoS One, 2015. 10(9): p. e0137053. 11. Kekelidze, M., et al., Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World journal of gastroenterology: WJG, 2013. 19(46): p. 8502. 12. De Rosa, M., et al., Genetics, diagnosis and management of colorectal cancer. Oncology reports, 2015. 34(3): p. 1087-1096. 13. Yeh, Y.-S., et al., Prognostic and molecular factors in stage II colorectal cancer. Genomic Medicine, Biomarkers, and Health Sciences, 2011. 3(1): p. 2-8. 14. Stoehlmacher, J., et al., A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. British journal of cancer, 2004. 91(2): p. 344. 15. Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England journal of medicine, 2004. 350(23): p. 2335-2342. 16. Koopman, M., et al., Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. The Lancet, 2007. 370(9582): p. 135-142. 17. Chai, J., et al., MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life, 2015. 67(3): p. 191-201. 18. Ma, J., et al., Association between mismatch repair gene and irinotecan-based chemotherapy in metastatic colon cancer. Tumour Biol, 2015. 36(12): p. 9599-609. 19. Gou, H.F., et al., Chemo-immunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS One, 2014. 9(1): p. e85789. 20. Reya, T., et al., Stem cells, cancer, and cancer stem cells. nature, 2001. 414(6859): p. 105. 21. Dawood, S., L. Austin, and M. Cristofanilli, Cancer Stem Cells: Implications for Cancer Therapy: Page 2 of 3. Oncology, 2014. 28(12). 22. O’Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106. 23. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111. 24. Shmelkov, S.V., CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(–) metastatic colon cancer cells initiate tumors. 2008. 118(6): p. 2111-20. 25. Nagata, H., et al., CD133 expression predicts post-operative recurrence in patients with colon cancer with peritoneal metastasis. International journal of oncology, 2018. 52(3): p. 721-732. 26. Mérillat, A.-M., et al., Conditional gene targeting of the ENaC subunit genes Scnn1b and Scnn1g. American Journal of Physiology-Renal Physiology, 2009. 296(2): p. F249-F256. 27. . 28. Qian, Y., et al., Sodium channel subunit SCNN1B suppresses gastric cancer growth and metastasis via GRP78 degradation. Cancer research, 2017: p. canres. 1595.2016. 29. Anaya, J., OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science, 2016. 2: p. e67. 30. Chandrashekar, D.S., et al., UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017. 19(8): p. 649-658. 31. Tomczak, K., P. Czerwińska, and M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary oncology, 2015. 19(1A): p. A68. 32. Khoury, J.D., et al., The landscape of DNA virus associations across human malignant cancers using RNA-Seq: an analysis of 3775 cases. Journal of virology, 2013: p. JVI. 00340-13. 33. Fiske, J.L., et al., Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev, 2006. 25(3): p. 493-500. 34. Le Guennec, J.Y., et al., Voltage-gated ion channels, new targets in anti-cancer research. Recent Pat Anticancer Drug Discov, 2007. 2(3): p. 189-202. 35. Pardo, L.A., et al., Role of voltage-gated potassium channels in cancer. J Membr Biol, 2005. 205(3): p. 115-24. 36. Kunzelmann, K., Ion channels and cancer. J Membr Biol, 2005. 205(3): p. 159-73. 37. Berdiev, B.K., et al., Acid-sensing ion channels in malignant gliomas. J Biol Chem, 2003. 278(17): p. 15023-34. 38. Abdul, M. and N. Hoosein, Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res, 2002. 22(3): p. 1727-30. 39. Wiegering, A., et al., Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin. Neoplasia, 2017. 19(4): p. 301-9. 40. Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6. 41. Glamočlija, U. and A. Jevrić-Čaušević, Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics. Acta Pharmaceutica, 2010. 60(4): p. 387-406. 42. Turner, J.R., Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 2009. 9(11): p. 799. 43. Balimane, P.V., S. Chong, and R.A. Morrison, Current methodologies used for evaluation of intestinal permeability and absorption. Journal of pharmacological and toxicological methods, 2000. 44(1): p. 301-312. 44. Shafiroff, B., Q.Y. Kau, and H. Baron, The Anatomy of Kerckring's Valves: Case Report on Their Maldevelopment. Annals of surgery, 1959. 149(4): p. 486. 45. Hidalgo, I.J., Assessing the absorption of new pharmaceuticals. Current topics in medicinal chemistry, 2001. 1(5): p. 385-401. 46. Gibaldi, M., R. Boyes, and S. Feldman, Influence of first‐pass effect on availability of drugs on oral administration. Journal of pharmaceutical sciences, 1971. 60(9): p. 1338-1340. 47. Chen, X., et al., A novel design of artificial membrane for improving the PAMPA model. Pharmaceutical research, 2008. 25(7): p. 1511-1520. 48. Hillgren, K.M., A. Kato, and R.T. Borchardt, In vitro systems for studying intestinal drug absorption. Medicinal research reviews, 1995. 15(2): p. 83-109. 49. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 1997. 23(1-3): p. 3-25. 50. Van Breemen, R.B. and Y. Li, Caco-2 cell permeability assays to measure drug absorption. Expert opinion on drug metabolism & toxicology, 2005. 1(2): p. 175-185. 51. Kansy, M., F. Senner, and K. Gubernator, Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of medicinal chemistry, 1998. 41(7): p. 1007-1010. 52. Stintzing, F.C. and R. Carle, Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 2004. 15(1): p. 19-38. 53. Egan, W.J. and G. Lauri, Prediction of intestinal permeability. Advanced drug delivery reviews, 2002. 54(3): p. 273-289. 54. Doluisio, J.T., et al., Drug absorption I: An in situ rat gut technique yielding realistic absorption rates. Journal of pharmaceutical sciences, 1969. 58(10): p. 1196-1200. 55. Wilson, T.H. and G. Wiseman, The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. The Journal of physiology, 1954. 123(1): p. 116-125. 56. Kerns, E.H. and L. Di, Pharmaceutical profiling in drug discovery. Drug discovery today, 2003. 8(7): p. 316-323. 57. Ussing, H.H. and K. Zerahn, Active transport of sodium as the source of electric current in the short‐circuited isolated frog skin. Acta physiologica Scandinavica, 1951. 23(2‐3): p. 110-127. 58. Balimane, P.V. and S. Chong, Cell culture-based models for intestinal permeability: a critique. Drug discovery today, 2005. 10(5): p. 335-343. 59. Artursson, P., K. Palm, and K. Luthman, Caco-2 monolayers in experimental and theoretical predictions of drug transport1. Advanced drug delivery reviews, 2001. 46(1-3): p. 27-43. 60. Hilgers, A.R., R.A. Conradi, and P.S. Burton, Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharmaceutical research, 1990. 7(9): p. 902-910. 61. Mainprize, T. and L. Grady. Standardization of an in vitro method of drug absorption. in Pharmacopeial Forum. 1998. USPC UNITED STATES PHARMACOPEIAL CONVENTION. 62. Artursson, P., Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorbtive (Caco‐2) cells. Journal of pharmaceutical sciences, 1990. 79(6): p. 476-482. 63. Hidalgo, I.J., T.J. Raub, and R.T. Borchardt, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 1989. 96(3): p. 736-749. 64. Alves, M., et al., Taxifolin: evaluation through ex vivo permeations on human skin and porcine vaginal mucosa. Current drug delivery, 2018.
|