跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏宏
研究生(外文):Chen, Bo-Hung
論文名稱:Two-Dimensional Extended Su-Schrieffer-Heeger Model
論文名稱(外文):Two-Dimensional Extended Su-Schrieffer-Heeger Model
指導教授:高賢忠
指導教授(外文):Kao, Hsien-Chung
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:106
語文別:英文
論文頁數:63
中文關鍵詞:Su-Schrieffer-Heeger modelTopoglogyTopological insulatorTopological semimetalSSH modelWinding number
外文關鍵詞:Su-Schrieffer-Heeger modelTopoglogyTopological insulatorTopological semimetalSSH modelWinding number
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
無中文摘要。
The edge state is known to be a characteristic of a topological material. In two-dimensional topological systems, one can use the \emph{Chern number} to describe the topological property of the systems. However, the Chern number fails to discern the topology for two special cases of two-band systems: (a) when the parameter space is restricted to a plane, and (b) when the system is a semimetal. One should find another way instead to characterize the nontrivial topology.

In this thesis, the SSH model is extended from one dimension to two dimensions by four different ways. None of them can be described by the Chern number. However, by applying the dimensional reduction, the systems are reduced to one dimension and are equivalent to the generalized SSH model, whose topological nontriviality is characterized by the \emph{winding number}. Since the open boundary conditions are preserved under the dimensional reduction, the edge effect should be described by the reduced Hamiltonian. Therefore, we find the quasi-bulk-boundary correspondence to connect the edge states of the two-dimensional systems and the winding number of the reduced Hamiltonian. Moreover, if the edges of SSH chains are preserved under the extension in the thesis, the edge states are also preserved.
[1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene”, Phys. Rev. Lett. 42, (1698)
[2] J. K. Asbóth, L. Oroszlány, A. P´ alyi, A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions, (Springer, Switzerland, 2016).
[3] M. Nakahara. Geometry, Topology and Physics, 2nd Edition, (CRC Press, 2003)
[4] D. J. Griffiths, Introduction to Quantum Mechanics, (Pearson Education Limited, Harlow, 2014)
[5] A. Kitaev, “Periodic table for topological insulators and superconduc tors”, AIP. Conf. Proc. 1134, 22 (2009).
[6] P. K. Nayak Recent Advances in Graphene Research (Intechopen, 2016)
[7] B.-H. Chen and D.-W. Chiou, “An elementary proof of bulk-boundary correspondence in the generalized Su-Schrieffer-Heeger model”, arXiv:1705.06913 [cond-mat.mes-hall].
[8] D. Varjas, F. de Juan, and Y.-M. Lu, “Space group constraints on weak indices in topological insulators”, Phys. Rev. B 96, (2017)
[9] E. Burstein, A. H. MacDonald and P. J. Stiles, Topological Insulators Volume 6, (Elsevier, 2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top