跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余欣縉
研究生(外文):Yu, Hsin-Chin
論文名稱:利用鎢磷硫化物奈米片進行高效光電化學產氫反應研究
論文名稱(外文):Highly Efficient of Photoelectrochemical Hydrogen Generation Reaction Using Tungsten Phosphosulfide Nano-sheets
指導教授:胡淑芬胡淑芬引用關係
指導教授(外文):Hu, Shu-Fen
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:光催化水分解二硫化鎢產氫反應
外文關鍵詞:Solar Water SplittingTungsten disulfideHydrogen Evolution Reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以矽晶圓為光催化水分解之基板,因其具光電流轉換特性與合適之能帶位置,故適合作為光陰極材料。光電化學系統以太陽光產氫作為解決當代能源需求問題之重要策略。於此策略,白金與其他貴金屬展現良好之光電流特性,但其價格昂貴,故開發地球上豐富之非貴金屬催化劑具其必要性。
  本研究以濕式蝕刻法將矽晶圓表面改質,使其表面呈微米金字塔形貌,因表面粗糙度增加,進而提升光吸收效率。以滴落塗佈法(drop-casting)於矽微米金字塔表面進行共催化劑之修飾,降低矽基板之光生載子動能不足之問題,有效提高產氫效率。此外,藉由熱退火技術於矽微米金字塔表面成功以鎢磷硫化物奈米片修飾,觀察其太陽能驅動之產氫反應活性。以二硫化鎢作為共催化劑之基材,發現其於RHE 0 V之光電流密度為-5.80 mA/cm2,爾後更進一步探討摻雜磷對於二硫化鎢之影響,發現於奈米結構中之磷摻雜可有效使二硫化鎢裸露更多活性點,使反應更加活躍,於RHE 0 V之光電流密度為 -19.11 mA/cm2,並具較低之Tafel斜率。藉電化學量測結果再次驗證WS0.60P1.40@Si MPs具最佳電流密度與電雙層特性。於8小時內具非常穩定之電流響應。此效應可藉由摻雜磷後之樣品光電化學活性與電化學活性提升加以證實。
  In this study, a silicon wafer is used as a substrate for photocatalytic water splitting. Because of its effective photocurrent conversion characteristics and suitable energy band gap, it is suitable for a photocathode material. Hydrogen produced from sunlight by photoelectrochemical systems is an important strategy to solve the problem of contemporary energy demand. In this strategy, platinum and other precious metals exhibit very good photocurrent characteristics, but their prices are too expensive, so the necessity of developing abundant non-precious metal catalysts on the earth is very important.
  In this study, the wet etching process was used to modify the surface of the silicon wafer to form a micro-pyramidal surface, which made its surface rough and increased the light absorption efficiency. The co-catalyst is modified by drop-casting on the surface of the micro-pyramid silicon, thereby reducing the problem of the poor kinetics of photoinduced carriers of the Si substrate and effectively activating the hydrogen production reaction. By using the thermal annealing technique, we successfully modified the surface of micro-pyramidal silicon with tungsten phosphosulfide nanosheets. And demonstrated the activity of hydrogen evolution reaction. Using tungsten disulfide as a co-catalyst, it was found that RHE 0 V exhibited a photocurrent density of -5.80 mA/cm2. Afterward, the effect of phosphorus doping on tungsten disulfide was further explored, and phosphorus doping was found in the nanostructure. The miscibility can effectively expose tungsten disulfide to more active sites and make the reaction more active. The photocurrent density at RHE 0 V is -19.11 mA/cm2 and the Tafel slope is lower. The results of electrochemical measurements verified that WS0.60P1.40@Si MPs have the best current density and electrical double layer properties. It has a very stable current response over than 8 hours. The raising activity by phosphorous doping confirms that photoelectrochemical activity and electrochemical activity can be increased by phosphorous doping.
(1) International Energy Outlook 2017. U.S. Energy Information Administration U.S. Energy Information Administr 2017.
(2) United States Environmental Protection Agency US EPA 1970.
(3) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38.
(4) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473.
(5) Van De Krol, R.; Grätzel, M. Photoelectrochemical Hydrogen Production. Springer 2012, 102, 1–321.
(6) Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278.
(7) Cabán Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nature Mater. 2015, 14, 1245–1251.
(8) Ye, R.; Angel Vicente, P.; Liu, Y.; Arellano Jimenez, M. J.; Peng, Z.; Wang, T.; Li, Y.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J.; Tour, J. M. High-Performance Hydrogen Evolution from MoS2(1–x)Px Solid Solution. Adv. Mater. 2016, 28, 1427–1432.
(9) Zhang, H.; Chen, G.; Bahnemann, D. W. J. Photoelectrocatalytic materials for environmental applications. Mater. Chem. 2009, 19, 5089–5121.
(10) 邱國斌; 蔡定平 金屬表面電漿簡介物. 理雙月刊 2006, 廿八卷二期.
(11) Stewart, E. M.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.
(12) Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Ho, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S.; Lee, J. F.; Liu, R. S.; Tsai, D. P. Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures. Acs Nano 2012, 6, 7362–7372.
(13) Oh, I.; Kye, J.; Hwang, S. Enhanced Photoelectrochemical Hydrogen Production from Silicon Nanowire Array Photocathode. Nano Lett. 2012, 12, 298–302.
(14) Chen, C. J.; Yang, K. C.; Basu, M.; Lu, T. H.; Lu, Y. R.; Dong, C. L.; Hu, S. F.; Liu, R. S. Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 5400−5407.
(15) Ye, X.; Zou, S.; Chen, K.; Li, J.; Huang, J.; Cao, F.; Wang, X.; Zhang, L.; Wang, X. F.; Shen, M.; Su, X. 18.45%-Efficient Multi-Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo-Pyramid Texture. Adv. Funct. Mater. 2014, 24, 6708–6716.
(16) Ye, R.; Angel-Vicente, P.; Liu, Y.; Arellano-Jimenez, M. J.; Peng, Z.; Wang, T.; Li, Y.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J.; Tour, J. M. High-Performance Hydrogen Evolution from MoS2(1–x)Px Solid Solution. Adv. Mater. 2016, 28, 1427–1432.
(17) Guo, X.; Ji, J.; Jiang, Q.; Zhang, L.; Ao, Z.; Fan, X.; Wang, S.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Few-Layered Trigonal WS2 Nanosheet-Coated Graphite Foam as an Efficient Free-Standing Electrode for a Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces. 2017, 9, 30591–30598.
(18) Zhua, M.; Zhaib, C.; Fujitsukaa, M.; Majimaa, T. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2. Appl. Catal., B. 2018, 221, 645–651.
(19) G., C.; Morales, G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev 2014, 43, 6555–6569.
(20) He, Q.; Xu, W.; Chena, S.; Liua, D.; Habiba, M.; Liua, Q.; Wanga, C.; Haleema, Y. A.; Xianga, T.; Wua, C.; Khalila, A.; Fanga, Q.; Niub, Z.; Song, L. In situ growth of metallic 1T-WS2 nanoislands on single-walled carbon nanotube films for improved electrochemical performance. RSC Adv. 2016, 6, 87919–87925.
(21) 方嘉德, 儀器分析精選本. 蒼海書局: 2003.
(22) Smith, E.; Dent, G., Modern Raman Spectroscopy – A Practical Approach. John Wiley & Sons Ltd: 2005.
(23) Berkdemir, A.; Gutie´rrez, H. R.; Me´ndez, A. s. R. B.; Lo´pez, N. s. P.; Elı´as, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; Urı´as, F. L. p.; Charlier, J. C.; Terrones, H.; Terrones, M. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3 : 1755, 1–8.
(24) Barman, A. Measurement of magnetic hysteresis loops in continuous and patterned ferromagnetic nanostructures by static magneto-optical kerr effect magnetometer. SUMMER PROJECT REPORT 2015, 26.
(25) Yang, Y.; Fei, H.; Ruan, G.; Li, Y.; Tour, J. M. Vertically Aligned WS2 Nanosheets for Water Splitting. Adv. Funct. Mater. 2015, 25, 6199–6204.
(26) Oakton, E.; Siddiqi, G.; Fedorov, A.; Cope´ret, C. Tungsten oxide by non-hydrolytic sol–gel: effect of molecular precursor on morphology, phase and photocatalytic performance. New J. Chem. 2016, 40, 217–222.
(27) Wang, D.; Li, Q.; Ha, C.; Xing, Z.; Yang, X. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting. ACS Cent. Sci. 2018, 4, 112–119.
(28) Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Arque, F. P. G. d.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; Luna, P. D.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.
(29) Prouzet, E.; Heising, J.; Kanatzidis, M. G. Structure of Restacked and Pillared WS2: An X-ray Absorption Study. Chem. Mater. 2003, 15, 412–418.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top